Mercurial > repos > iuc > seurat
diff Seurat.R @ 15:fab6ff46e019 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/seurat commit b437a46efb50e543b6d7c9988f954efe2caa9046
author | iuc |
---|---|
date | Fri, 07 Jul 2023 01:43:02 +0000 |
parents | c4db6ec33fec |
children |
line wrap: on
line diff
--- a/Seurat.R Mon Nov 21 14:35:28 2022 +0000 +++ b/Seurat.R Fri Jul 07 01:43:02 2023 +0000 @@ -8,19 +8,24 @@ #' low_thresholds: "" #' high_thresholds: "" #' numPCs: "" -#' cells_use: "" #' resolution: "" #' perplexity: "" #' min_pct: "" #' logfc_threshold: "" +#' end_step: "" #' showcode: "" #' warn: "" #' varstate: "" #' vlnfeat: "" #' featplot: "" #' PCplots: "" -#' tsne: "" +#' nmds: "" #' heatmaps: "" +#' norm_out: "" +#' variable_out: "" +#' pca_out : "" +#' clusters_out: "" +#' markers_out: "" #' --- # nolint start @@ -34,87 +39,148 @@ vlnfeat <- as.logical(params$vlnfeat) featplot <- as.logical(params$featplot) pc_plots <- as.logical(params$PCplots) -tsne <- as.logical(params$tsne) +nmds <- as.logical(params$nmds) heatmaps <- as.logical(params$heatmaps) - +end_step <- as.integer(params$end_step) +norm_out <- as.logical(params$norm_out) # we need that to not crash Galaxy with an UTF-8 error on German LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") #+ echo = F, warning = `warn`, include =`varstate` min_cells <- as.integer(params$min_cells) min_genes <- as.integer(params$min_genes) -low_thresholds <- as.integer(params$low_thresholds) -high_thresholds <- as.integer(params$high_thresholds) -num_pcs <- as.integer(params$numPCs) -cells_use <- as.integer(params$cells_use) -resolution <- as.double(params$resolution) -perplexity <- as.integer(params$perplexity) -min_pct <- as.double(params$min_pct) -logfc_threshold <- as.double(params$logfc_thresh) print(paste0("Minimum cells: ", min_cells)) print(paste0("Minimum features: ", min_genes)) +low_thresholds <- as.integer(params$low_thresholds) +high_thresholds <- as.integer(params$high_thresholds) print(paste0("Umi low threshold: ", low_thresholds)) print(paste0("Umi high threshold: ", high_thresholds)) -print(paste0("Number of principal components: ", num_pcs)) -print(paste0("Resolution: ", resolution)) -print(paste0("Perplexity: ", perplexity)) -print(paste0("Minimum percent of cells", min_pct)) -print(paste0("Logfold change threshold", logfc_threshold)) + +if (end_step >= 2) { + variable_out <- as.logical(params$variable_out) +} + -#+ echo = FALSE +if (end_step >= 3) { + num_pcs <- as.integer(params$numPCs) + print(paste0("Number of principal components: ", num_pcs)) + pca_out <- as.logical(params$pca_out) +} +if (end_step >= 4) { + if (params$perplexity == "") { + perplexity <- -1 + print(paste0("Perplexity: ", perplexity)) + } else { + perplexity <- as.integer(params$perplexity) + print(paste0("Perplexity: ", perplexity)) + } + resolution <- as.double(params$resolution) + print(paste0("Resolution: ", resolution)) + clusters_out <- as.logical(params$clusters_out) +} +if (end_step >= 5) { + min_pct <- as.double(params$min_pct) + logfc_threshold <- as.double(params$logfc_thresh) + print(paste0("Minimum percent of cells", min_pct)) + print(paste0("Logfold change threshold", logfc_threshold)) + markers_out <- as.logical(params$markers_out) +} + + if (showcode == TRUE) print("Read in data, generate inital Seurat object") #+ echo = `showcode`, warning = `warn`, message = F counts <- read.delim(params$counts, row.names = 1) seuset <- Seurat::CreateSeuratObject(counts = counts, min.cells = min_cells, min.features = min_genes) -#+ echo = FALSE if (showcode == TRUE && vlnfeat == TRUE) print("Raw data vizualization") #+ echo = `showcode`, warning = `warn`, include=`vlnfeat` -Seurat::VlnPlot(object = seuset, features = c("nFeature_RNA", "nCount_RNA")) -Seurat::FeatureScatter(object = seuset, feature1 = "nCount_RNA", feature2 = "nFeature_RNA") +if (vlnfeat == TRUE){ + print(Seurat::VlnPlot(object = seuset, features = c("nFeature_RNA", "nCount_RNA"))) + print(Seurat::FeatureScatter(object = seuset, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")) +} -#+ echo = FALSE if (showcode == TRUE) print("Filter and normalize for UMI counts") #+ echo = `showcode`, warning = `warn` seuset <- subset(seuset, subset = `nCount_RNA` > low_thresholds & `nCount_RNA` < high_thresholds) seuset <- Seurat::NormalizeData(seuset, normalization.method = "LogNormalize", scale.factor = 10000) +if (norm_out == TRUE) { + saveRDS(seuset, "norm_out.rds") +} -#+ echo = FALSE -if (showcode == TRUE && featplot == TRUE) print("Variable Genes") -#+ echo = `showcode`, warning = `warn`, include = `featplot` -seuset <- Seurat::FindVariableFeatures(object = seuset, selection.method = "mvp") -Seurat::VariableFeaturePlot(seuset, cols = c("black", "red"), selection.method = "disp") -seuset <- Seurat::ScaleData(object = seuset, vars.to.regress = "nCount_RNA") +if (end_step >= 2) { + #+ echo = FALSE + if (showcode == TRUE && featplot == TRUE) print("Variable Genes") + #+ echo = `showcode`, warning = `warn`, include = `featplot` + seuset <- Seurat::FindVariableFeatures(object = seuset, selection.method = "mvp") + if (featplot == TRUE) { + print(Seurat::VariableFeaturePlot(seuset, cols = c("black", "red"), selection.method = "disp")) + } + seuset <- Seurat::ScaleData(object = seuset, vars.to.regress = "nCount_RNA") + if (variable_out == TRUE) { + saveRDS(seuset, "var_out.rds") + } +} -#+ echo = FALSE -if (showcode == TRUE && pc_plots == TRUE) print("PCA Visualization") -#+ echo = `showcode`, warning = `warn`, include = `pc_plots` -seuset <- Seurat::RunPCA(seuset, npcs = num_pcs) -Seurat::VizDimLoadings(seuset, dims = 1:2) -Seurat::DimPlot(seuset, dims = c(1, 2), reduction = "pca") -Seurat::DimHeatmap(seuset, dims = 1:num_pcs, nfeatures = 30, reduction = "pca") -seuset <- Seurat::JackStraw(seuset, dims = num_pcs, reduction = "pca", num.replicate = 100) -seuset <- Seurat::ScoreJackStraw(seuset, dims = 1:num_pcs) -Seurat::JackStrawPlot(seuset, dims = 1:num_pcs) -Seurat::ElbowPlot(seuset, ndims = num_pcs, reduction = "pca") +if (end_step >= 3) { + #+ echo = FALSE + if (showcode == TRUE && pc_plots == TRUE) print("PCA Visualization") + #+ echo = `showcode`, warning = `warn`, include = `pc_plots` + seuset <- Seurat::RunPCA(seuset, npcs = num_pcs) + seuset <- Seurat::JackStraw(seuset, dims = num_pcs, reduction = "pca", num.replicate = 100) + seuset <- Seurat::ScoreJackStraw(seuset, dims = 1:num_pcs) + if (pc_plots == TRUE) { + print(Seurat::VizDimLoadings(seuset, dims = 1:2)) + print(Seurat::DimPlot(seuset, dims = c(1, 2), reduction = "pca")) + print(Seurat::DimHeatmap(seuset, dims = 1:num_pcs, nfeatures = 30, reduction = "pca")) + print(Seurat::JackStrawPlot(seuset, dims = 1:num_pcs)) + print(Seurat::ElbowPlot(seuset, ndims = num_pcs, reduction = "pca")) + } + if (pca_out == TRUE) { + saveRDS(seuset, "pca_out.rds") + } +} -#+ echo = FALSE -if (showcode == TRUE && tsne == TRUE) print("tSNE") -#+ echo = `showcode`, warning = `warn`, include = `tsne` -seuset <- Seurat::FindNeighbors(object = seuset) -seuset <- Seurat::FindClusters(object = seuset) -if (perplexity == -1) { - seuset <- Seurat::RunTSNE(seuset, dims = 1:num_pcs, resolution = resolution); -} else { - seuset <- Seurat::RunTSNE(seuset, dims = 1:num_pcs, resolution = resolution, perplexity = perplexity); +if (end_step >= 4) { + #+ echo = FALSE + if (showcode == TRUE && nmds == TRUE) print("tSNE and UMAP") + #+ echo = `showcode`, warning = `warn`, include = `nmds` + seuset <- Seurat::FindNeighbors(object = seuset) + seuset <- Seurat::FindClusters(object = seuset) + if (perplexity == -1) { + seuset <- Seurat::RunTSNE(seuset, dims = 1:num_pcs, resolution = resolution); + } else { + seuset <- Seurat::RunTSNE(seuset, dims = 1:num_pcs, resolution = resolution, perplexity = perplexity); + } + if (nmds == TRUE) { + print(Seurat::DimPlot(seuset, reduction = "tsne")) + } + seuset <- Seurat::RunUMAP(seuset, dims = 1:num_pcs) + if (nmds == TRUE) { + print(Seurat::DimPlot(seuset, reduction = "umap")) + } + if (clusters_out == TRUE) { + tsnedata <- Seurat::Embeddings(seuset, reduction="tsne") + saveRDS(seuset, "tsne_out.rds") + umapdata <- Seurat::Embeddings(seuset, reduction="umap") + saveRDS(seuset, "umap_out.rds") + } } -Seurat::DimPlot(seuset, reduction = "tsne") + -#+ echo = FALSE -if (showcode == TRUE && heatmaps == TRUE) print("Marker Genes") -#+ echo = `showcode`, warning = `warn`, include = `heatmaps` -markers <- Seurat::FindAllMarkers(seuset, only.pos = TRUE, min.pct = min_pct, logfc.threshold = logfc_threshold) -top10 <- dplyr::group_by(markers, cluster) -top10 <- dplyr::top_n(top10, 10, avg_log2FC) -Seurat::DoHeatmap(seuset, features = top10$gene) +if (end_step == 5) { + #+ echo = FALSE + if (showcode == TRUE && heatmaps == TRUE) print("Marker Genes") + #+ echo = `showcode`, warning = `warn`, include = `heatmaps` + markers <- Seurat::FindAllMarkers(seuset, only.pos = TRUE, min.pct = min_pct, logfc.threshold = logfc_threshold) + top10 <- dplyr::group_by(markers, cluster) + top10 <- dplyr::top_n(top10, n = 10, wt = avg_log2FC) + print(top10) + if (heatmaps == TRUE) { + print(Seurat::DoHeatmap(seuset, features = top10$gene)) + } + if (markers_out == TRUE) { + saveRDS(seuset, "markers_out.rds") + data.table::fwrite(x = markers, row.names=TRUE, sep="\t", file = "markers_out.tsv") + } +} # nolint end