Mercurial > repos > iuc > seurat
view Seurat.R @ 1:7319f83ae734 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/seurat commit 88cf23c767023f71b4ea1e72aac568cc694cc34a"
author | iuc |
---|---|
date | Mon, 09 Dec 2019 14:32:16 -0500 |
parents | |
children | 321bdd834266 |
line wrap: on
line source
#' --- #' title: "Seurat Analysis" #' author: "Performed using Galaxy" #' params: #' counts: "" #' min_cells: "" #' min_genes: "" #' low_thresholds: "" #' high_thresholds: "" #' numPCs: "" #' cells_use: "" #' resolution: "" #' min_pct: "" #' logfc_threshold: "" #' showcode: "" #' warn: "" #' varstate: "" #' vlnfeat: "" #' featplot: "" #' PCplots: "" #' tsne: "" #' heatmaps: "" #' --- #+ echo=F, warning = F, message=F options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) showcode <- as.logical(params$showcode) warn <- as.logical(params$warn) varstate <- as.logical(params$varstate) vlnfeat <- as.logical(params$vlnfeat) featplot <- as.logical(params$featplot) PCplots <- as.logical(params$PCplots) tsne <- as.logical(params$tsne) heatmaps <- as.logical(params$heatmaps) # we need that to not crash galaxy with an UTF8 error on German LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") #+ echo = F, warning = `warn`, include =`varstate` min_cells <- as.integer(params$min_cells) min_genes <- as.integer(params$min_genes) low_thresholds <- as.integer(params$low_thresholds) high_thresholds <- as.integer(params$high_thresholds) numPCs <- as.integer(params$numPCs) cells_use <- as.integer(params$cells_use) resolution <- as.double(params$resolution) min_pct <- as.double(params$min_pct) logfc_threshold <- as.double(params$logfc_thresh) print(paste0("Minimum cells: ", min_cells)) print(paste0("Minimum features: ", min_genes)) print(paste0("Umi low threshold: ", low_thresholds)) print(paste0("Umi high threshold: ", high_thresholds)) print(paste0("Number of principal components: ", numPCs)) print(paste0("Resolution: ", resolution)) print(paste0("Minimum percent of cells", min_pct)) print(paste0("Logfold change threshold", logfc_threshold)) #+ echo = FALSE if(showcode == TRUE){print("Read in data, generate inital Seurat object")} #+ echo = `showcode`, warning = `warn`, message = F counts <- read.delim(params$counts, row.names=1) seuset <- Seurat::CreateSeuratObject(counts = counts, min.cells = min_cells, min.features = min_genes) #+ echo = FALSE if(showcode == TRUE && vlnfeat == TRUE){print("Raw data vizualization")} #+ echo = `showcode`, warning = `warn`, include=`vlnfeat` Seurat::VlnPlot(object = seuset, features = c("nFeature_RNA", "nCount_RNA"), axis="v") Seurat::FeatureScatter(object = seuset, feature1 = "nCount_RNA", feature2 = "nFeature_RNA") #+ echo = FALSE if(showcode == TRUE){print("Filter and normalize for UMI counts")} #+ echo = `showcode`, warning = `warn` seuset <- subset(seuset, subset = `nCount_RNA` > low_thresholds & `nCount_RNA` < high_thresholds) seuset <- Seurat::NormalizeData(seuset, normalizeation.method = "LogNormalize", scale.factor = 10000) #+ echo = FALSE if(showcode == TRUE && featplot == TRUE){print("Variable Genes")} #+ echo = `showcode`, warning = `warn`, include = `featplot` seuset <- Seurat::FindVariableFeatures(object = seuset, selection.method = "mvp") Seurat::VariableFeaturePlot(seuset, cols = c("black", "red"), selection.method = "disp") seuset <- Seurat::ScaleData(object = seuset, vars.to.regress = "nCount_RNA") #+ echo = FALSE if(showcode == TRUE && PCplots == TRUE){print("PCA Visualization")} #+ echo = `showcode`, warning = `warn`, include = `PCplots` seuset <- Seurat::RunPCA(seuset, npcs=numPCs) Seurat::VizDimLoadings(seuset, dims = 1:2) Seurat::DimPlot(seuset, dims = c(1,2), reduction="pca") Seurat::DimHeatmap(seuset, dims=1:numPCs, nfeatures=30, reduction="pca") seuset <- Seurat::JackStraw(seuset, dims=numPCs, reduction = "pca", num.replicate = 100) seuset <- Seurat::ScoreJackStraw(seuset, dims = 1:numPCs) Seurat::JackStrawPlot(seuset, dims = 1:numPCs) Seurat::ElbowPlot(seuset, ndims = numPCs, reduction = "pca") #+ echo = FALSE if(showcode == TRUE && tsne == TRUE){print("tSNE")} #+ echo = `showcode`, warning = `warn`, include = `tsne` seuset <- Seurat::FindNeighbors(object = seuset) seuset <- Seurat::FindClusters(object = seuset) seuset <- Seurat::RunTSNE(seuset, dims = 1:numPCs, resolution = resolution) Seurat::DimPlot(seuset, reduction="tsne") #+ echo = FALSE if(showcode == TRUE && heatmaps == TRUE){print("Marker Genes")} #+ echo = `showcode`, warning = `warn`, include = `heatmaps` markers <- Seurat::FindAllMarkers(seuset, only.pos = TRUE, min.pct = min_pct, logfc.threshold = logfc_threshold) top10 <- dplyr::group_by(markers, cluster) top10 <- dplyr::top_n(top10, 10, avg_logFC) Seurat::DoHeatmap(seuset, features = top10$gene)