Mercurial > repos > iuc > seurat_clustering
diff neighbors_clusters_markers.xml @ 0:94f1b9c7286f draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/seurat_v5 commit a9214c07b0cc929a51fd92a369bb89c675b6c88d
author | iuc |
---|---|
date | Wed, 11 Sep 2024 10:21:37 +0000 |
parents | |
children | 51eb02d9b17a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/neighbors_clusters_markers.xml Wed Sep 11 10:21:37 2024 +0000 @@ -0,0 +1,831 @@ +<tool id="seurat_clustering" name="Seurat Find Clusters" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> + <description>- Neighbors and Markers</description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="requirements"/> + <expand macro="version_command"/> + <command detect_errors="exit_code"><![CDATA[ +@CMD@ + ]]></command> + <configfiles> + <configfile name="script_file"><![CDATA[ +@CMD_imports@ +@CMD_read_inputs@ + +#if $method.method == 'FindNeighbors' +seurat_obj<-FindNeighbors( + seurat_obj, + #if $method.reduction != '' + reduction = '$method.reduction', + #end if + #if $method.dims != '' + dims = 1:$method.dims, + #end if + k.param = $method.k_param, + nn.method = '$method.nn_method.nn_method', + #if $method.nn_method.nn_method == 'rann' + nn.eps = $method.nn_method.nn_eps, + #else if $method.nn_method.nn_method == 'annoy' + annoy.metric = '$method.nn_method.annoy_metric', + #end if + compute.snn = $method.adv.compute_snn.compute_snn, + #if $method.adv.compute_snn.compute_snn == 'TRUE' + #if $method.adv.compute_snn.prune_snn + prune.snn = $method.adv.compute_snn.prune_snn, + #end if + distance.matrix = $method.adv.compute_snn.distance_matrix, + #else if $method.adv.compute_snn.compute_snn == 'FALSE' + distance.matrix = $method.adv.compute_snn.distance_matrix.distance_matrix, + #if $method.adv.compute_snn.distance_matrix.distance_matrix == 'FALSE' + return.neighbor = $method.adv.compute_snn.distance_matrix.return_neighbor, + #end if + #end if + l2.norm = $method.adv.l2_norm, + n.trees = $method.adv.n_trees +) + +#else if $method.method == 'FindMultiModalNeighbors' +seurat_obj<-FindMultiModalNeighbors( + seurat_obj, + reduction.list = list('$method.reduction_1', '$method.reduction_2'), + dims.list = list(1:$method.dims_1, 1:$method.dims_2), + k.nn = $method.k_nn, + knn.graph.name = '$method.adv.knn_graph_name', + snn.graph.name = '$method.adv.snn_graph_name', + weighted.nn.name = '$method.adv.weighted_nn_name', + #if $method.adv.modality_weight_name != '' + modality.weight.name = '$method.adv.modality_weight_name', + #end if + knn.range = $method.adv.knn_range +) + +#else if $method.method == 'FindClusters' +@reticulate_hack@ +seurat_obj<-FindClusters( + seurat_obj, + modularity.fxn = $method.modularity_fxn, + resolution = $method.resolution, + algorithm = $method.algorithm.algorithm, + #if $method.algorithm.algorithm == '4' + #if $method.algorithm.initial_membership + initial.membership = $method.algorithm.initial_membership, + #end if + #if $method.algorithm.node_sizes + node.sizes = $method.algorithm.node_sizes, + #end if + method = '$method.algorithm.method_cluster', + #end if + n.start = $method.n_start, + n.iter = $method.n_iter, + random.seed = $method.random_seed, + #if $method.graph_name != '' + graph.name = '$method.graph_name', + #end if + #if $method.cluster_name != '' + cluster.name = '$method.cluster_name' + #end if +) + +#else if $method.method == 'FindAllMarkers' + + #if $method.features + features_list<-paste(readLines('$method.features'), collapse=",") + #end if + +seurat_obj<-FindAllMarkers( + seurat_obj, + #if $method.features + features = c(unlist(strsplit(features_list, ","))), + #end if + logfc.threshold = $method.logfc_threshold, + test.use = '$method.test_use.test_use', + #if $method.test_use.test_use == 'negbinom' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + min.cells.feature = $method.test_use.min_cells_feature, + #else if $method.test_use.test_use == 'poisson' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + min.cells.feature = $method.test_use.min_cells_feature, + #else if $method.test_use.test_use =='LR' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + #else if $method.test_use.test_use == 'MAST' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + #else if $method.test_use.test_use == 'roc' + return.thresh = $method.test_use.return_thresh, + #end if + slot = '$method.slot', + #if $method.adv.assay != '' + assay = '$method.adv.assay', + #end if + min.pct = $method.adv.min_pct, + #if $method.adv.min_diff_pct + min.diff.pct = $method.adv.min_diff_pct, + #end if + only.pos = $method.adv.only_pos, + #if $method.adv.max_cells_per_ident + max.cells.per.ident = $method.adv.max_cells_per_ident, + #end if + #if $method.adv.random_seed + random.seed = $method.adv.random_seed, + #end if + min.cells.group = $method.adv.min_cells_group, + #if $method.fc_name != '' + fc.name = '$method.adv.fc_name', + #end if + base = $method.adv.base, + densify = $method.adv.densify +) + + #if $method.set_top_markers.set_top_markers == 'true' + N = $method.set_top_markers.topN + seurat_obj<-dplyr::slice_head(seurat_obj, n = N, by = cluster) + #end if + +@CMD_write_markers_tab@ + +#else if $method.method == 'FindMarkers' + + #if $method.features + features_list<-paste(readLines('$method.features'), collapse=",") + #end if + #if $method.cells.cells == 'true' + cell_1_list<-paste(readLines('$method.cells_1'), collapse=",") + cell_2_list<-paste(readLines('$method.cells_2'), collapse=",") + #end if + +seurat_obj<-FindMarkers( + seurat_obj, + slot = '$method.slot', + #if $method.cells.cells == 'true' + cells.1 = c(unlist(strsplit(cell_1_list, ","))), + cells.2 = c(unlist(strsplit(cell_2_list, ","))), + #end if + #if $method.regroup.regroup == 'true' + group.by = '$method.regroup.group_by', + #if $method.regroup.subset_ident != '' + subset.ident = '$method.regroup.subset_ident', + #end if + #end if + #if $method.ident.ident == 'true' + ident.1 = '$method.ident.ident_1', + #if $method.ident.ident_2 != '' + ident.2 = c(unlist(strsplit(gsub(" ", "", '$method.ident.ident_2'), ","))), + #end if + #end if + #if $method.features + features = c(unlist(strsplit(features_list, ","))), + #end if + logfc.threshold = $method.logfc_threshold, + test.use = '$method.test_use.test_use', + #if $method.test_use.test_use == 'negbinom' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + min.cells.feature = $method.test_use.min_cells_feature, + #else if $method.test_use.test_use == 'poisson' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + min.cells.feature = $method.test_use.min_cells_feature, + #else if $method.test_use.test_use =='LR' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + #else if $method.test_use.test_use == 'MAST' + #if $method.test_use.latent_vars != '' + latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), + #end if + #end if + #if $method.adv.assay != '' + assay = '$method.adv.assay', + #end if + min.pct = $method.adv.min_pct, + #if $method.adv.min_diff_pct + min.diff.pct = $method.adv.min_diff_pct, + #end if + only.pos = $method.adv.only_pos, + #if $method.adv.max_cells_per_ident + max.cells.per.ident = $method.adv.max_cells_per_ident, + #end if + #if $method.adv.random_seed + random.seed = $method.adv.random_seed, + #end if + min.cells.group = $method.adv.min_cells_group, + #if $method.adv.fc_name != '' + fc.name = '$method.adv.fc_name', + #end if + densify = $method.adv.densify +) + +@CMD_write_markers_tab@ + +#else if $method.method == 'FindConservedMarkers' +seurat_obj<-FindConservedMarkers( + seurat_obj, + ident.1 = $method.ident_1, + #if $method.ident_2 != '' + ident.2 = $method.ident_2, + #end if + grouping.var = '$method.grouping_var', + #if $method.assay != '' + assay = '$method.assay', + #end if + slot = '$method.slot', + min.cells.group = $method.min_cells_group +) + +@CMD_write_markers_tab@ + +#end if + +@CMD_rds_write_outputs@ + +]]></configfile> + </configfiles> + <inputs> + <expand macro="input_rds"/> + <conditional name="method"> + <param name="method" type="select" label="Method used"> + <option value="FindNeighbors">Compute nearest neighbors with 'FindNeighbors'</option> + <option value="FindMultiModalNeighbors">Compute nearest neighbors for multimodal data with 'FindMultiModalNeighbors'</option> + <option value="FindClusters">Identify cell clusters with 'FindClusters'</option> + <option value="FindAllMarkers">Identify marker genes with 'FindAllMarkers'</option> + <option value="FindMarkers">Identify marker genes for specific groups with 'FindMarkers'</option> + <option value="FindConservedMarkers">Find markers conserved between groups with 'FindConservedMarkers'</option> + </param> + <when value="FindNeighbors"> + <expand macro="select_reduction_pca"/> + <expand macro="set_dims"/> + <param name="k_param" type="integer" value="20" label="Set k for k-nearest neighbors" help="(k.param)"/> + <conditional name="nn_method"> + <param name="nn_method" type="select" label="Method for finding nearest neighbors" help="(nn.method)"> + <option value="rann">rann</option> + <option value="annoy" selected="true">annoy</option> + </param> + <when value="rann"> + <param name="nn_eps" type="float" value="0.0" label="Set error bound for nearest neighbor search" help="(nn.eps)"/> + </when> + <when value="annoy"> + <param name="annoy_metric" type="select" label="Distance metric for annoy method" help="(annoy.metric)"> + <option value="euclidean" selected="true">euclidean</option> + <option value="cosine">cosine</option> + <option value="manhattan">manhattan</option> + <option value="hamming">hamming</option> + </param> + </when> + </conditional> + <section name="adv" title="Advanced Options"> + <param name="n_trees" type="integer" value="50" label="Number of trees for nearest neighbor search" help="(n.trees)"/> + <param name="l2_norm" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="false" label="Take l2Norm of data" help="(l2.norm)"/> + <conditional name="compute_snn"> + <param name="compute_snn" type="select" label="Compute the shared nearest neighbor (SNN) graph" help="(compute.snn)"> + <option value="FALSE">No</option> + <option value="TRUE" selected="true">Yes</option> + </param> + <when value="FALSE"> + <conditional name="distance_matrix"> + <param name="distance_matrix" type="select" label="Use a distance matrix" help="(distance.matrix)"> + <option value="FALSE" selected="true">No</option> + <option value="TRUE">Yes</option> + </param> + <when value="FALSE"> + <param name="return_neighbor" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="false" label="Return result as neighbor object" help="(return.neighbor)"/> + </when> + <when value="TRUE"></when> + </conditional> + </when> + <when value="TRUE"> + <param name="prune_snn" type="float" optional="true" value="" min="0" max="1" label="Set cutoff for Jaccard index when computing overlap for SNN" help="0 no pruning, 1 prune everything (prune.SNN)"/> + <param name="distance_matrix" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="false" label="Use a distance matrix" help="(distance.matrix)"/> + </when> + </conditional> + </section> + </when> + <when value="FindMultiModalNeighbors"> + <param name="reduction_1" type="text" value="pca" label="Reduction to use for first modality"> + <expand macro="valid_name"/> + </param> + <param name="dims_1" type="integer" value="10" label="Number of dimensions to use from first reduction"/> + <param name="reduction_2" type="text" value="apca" label="Reduction to use for second modality"> + <expand macro="valid_name"/> + </param> + <param name="dims_2" type="integer" value="10" label="Number of dimensions to use from second reduction"/> + <param name="k_nn" type="integer" value="20" label="Number of multimodal neighbors to compute" help="(k.nn)"/> + <section name="adv" title="Advanced Options"> + <param name="knn_graph_name" type="text" value="wknn" label="Name for multimodal knn graph" help="(knn.graph.name)"> + <expand macro="valid_name"/> + </param> + <param name="snn_graph_name" type="text" value="wsnn" label="Name for multimodal snn graph" help="(snn.graph.name)"> + <expand macro="valid_name"/> + </param> + <param name="weighted_nn_name" type="text" value="weighted.nn" label="Name for multimodal neighbor object" help="(weighted.nn.name)"> + <expand macro="valid_name"/> + </param> + <param name="modality_weight_name" optional="true" type="text" value="" label="Name for storing modality weights in metadata" help="(modality.weight.name)"> + <expand macro="valid_name"/> + </param> + <param name="knn_range" type="integer" value="200" label="Number of approximate neighbors to compute" help="(knn.range)"/> + </section> + </when> + <when value="FindClusters"> + <param name="modularity_fxn" type="select" label="Select modularity function" help="(modularity.fxn)"> + <option value="1" selected="true">standard</option> + <option value="2">alternative</option> + </param> + <param argument="resolution" type="float" value="0.8" label="Resolution"/> + <conditional name="algorithm"> + <param argument="algorithm" type="select" label="Algorithm for modularity optimization"> + <option value="1" selected="true">1. Original Louvain</option> + <option value="2">2. Louvain with multilevel refinement</option> + <option value="3">3. SLM</option> + <option value="4">4. Leiden</option> + </param> + <when value="4"> + <param name="initial_membership" type="integer" optional="true" value="" label="Set initial membership when using Python leidenalg function" help="defaults to singleton partition (initial.membership)"/> + <param name="node_sizes" type="integer" optional="true" value="" label="Set node size when using Python leidenalg function" help="(node.sizes)"/> + <param name="method_cluster" type="select" label="Method for leiden" help="matrix is fast for small data, enable igraph for larger data (method.cluster)"> + <option value="matrix" selected="true">matrix</option> + <option value="igraph">igraph</option> + </param> + </when> + <when value="1"> + </when> + <when value="2"> + </when> + <when value="3"> + </when> + </conditional> + <param name="n_start" type="integer" value="10" label="Number of random starts" help="(n.start)"/> + <param name="n_iter" type="integer" value="10" label="Maximal number of iterations per random start" help="(n.iter)"/> + <param name="random_seed" type="integer" value="0" label="Set random seed" help="(random.seed)"/> + <param name="group_singletons" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="true" label="Group singletons into nearest cluster" help="Set to false to create a cluster for all singletons (group.singletons)"/> + <param name="graph_name" type="text" optional="true" value="" label="Name of graph to use for the clustering algorithm" help="(graph.name)"> + <expand macro="valid_name"/> + </param> + <param name="cluster_name" type="text" optional="true" value="" label="Name for output clusters" help="(cluster.name)"> + <expand macro="valid_name"/> + </param> + </when> + <when value="FindAllMarkers"> + <expand macro="markers_inputs"/> + <conditional name="set_top_markers"> + <param name="set_top_markers" type="select" label="Limit output to top N markers per cluster"> + <option value="true">Yes</option> + <option value="false" selected="true">No</option> + </param> + <when value="true"> + <expand macro="set_topN"/> + </when> + <when value="false"> + </when> + </conditional> + <section name="adv" title="Advanced Options"> + <param argument="base" type="integer" value="2" label="Base with respect to which logarithms are computed"/> + <expand macro="advanced_markers_inputs"/> + </section> + </when> + <when value="FindMarkers"> + <conditional name="cells"> + <param name="cells" type="select" label="Compare markers for two groups of cells"> + <option value="true">Yes</option> + <option value="false" selected="true">No</option> + </param> + <when value="true"> + <param name="cells_1" type="data" format="txt,tabular" label="List of cell names for group 1" help="text file with one cell on each line (cells.1)"/> + <param name="cells_2" type="data" format="txt,tabular" label="List of cell names for group 2" help="text file with one cell on each line (cells.2)"/> + </when> + <when value="false"> + </when> + </conditional> + <conditional name="regroup"> + <param name="regroup" type="select" label="Change cell identities before finding markers"> + <option value="true">Yes</option> + <option value="false" selected="true">No</option> + </param> + <when value="true"> + <param name="group_by" type="text" value="group" label="Name of identity class to regroup cells into" help="a group from the cell metadata to find markers for (group.by)"/> + <param name="subset_ident" type="text" optional="true" value="" label="Identity class to subset before regrouping" help="only include cells from this cluster/identity in each new group (subset.ident)"/> + </when> + <when value="false"> + </when> + </conditional> + <conditional name="ident"> + <param name="ident" type="select" label="Compare markers between clusters of cells"> + <option value="true">Yes</option> + <option value="false" selected="true">No</option> + </param> + <when value="true"> + <param name="ident_1" type="text" optional="true" value="" label="Identity class to define markers for" help="e.g. cluster number or ident group name (ident.1)"/> + <param name="ident_2" type="text" optional="true" value="" label="Second identity class to compare" help="e.g. comma-separated list of cluster numbers or idents, leave blank to compare ident.1 against all other clusters. (ident.2)"> + <expand macro="valid_list"/> + </param> + </when> + <when value="false"> + </when> + </conditional> + <expand macro="markers_inputs"/> + <section name="adv" title="Advanced Options"> + <expand macro="advanced_markers_inputs"/> + </section> + </when> + <when value="FindConservedMarkers"> + <param name="ident_1" type="text" value="ident1" label="Identity class to define markers for" help="(ident.1)"/> + <param name="ident_2" type="text" optional="true" value="" label="Second identity class for comparison" help="leave blank to compare ident.1 to all other cells (ident.2)"/> + <param name="grouping_var" type="text" value="group" label="Grouping variable" help="(grouping.var)"/> + <expand macro="select_assay_RNA"/> + <expand macro="select_slot_data"/> + <param name="min_cells_group" type="integer" value="3" label="Minimum number of cells in one group" help="(min.cells.group)"/> + </when> + </conditional> + <expand macro="inputs_common_advanced"/> + </inputs> + <outputs> + <expand macro="seurat_outputs"/> + <expand macro="markers_out"/> + </outputs> + <tests> + <test expect_num_outputs="2"> + <!-- test1: FindNeighbors --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/pca.rds"/> + <conditional name="method"> + <param name="method" value="FindNeighbors"/> + <param name="dims" value="9"/> + <conditional name="nn_method"> + <param name="nn_method" value="annoy"/> + <param name="annoy_metric" value="euclidean"/> + </conditional> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindNeighbors"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/neighbors.rds" ftype="rds" compare="sim_size"/> + </test> + <test expect_num_outputs="2"> + <!-- test2: FindMultiModalNeighbors --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/citeseq_dims.rds"/> + <conditional name="method"> + <param name="method" value="FindMultiModalNeighbors"/> + <param name="reduction_1" value="pca"/> + <param name="dims_1" value="8"/> + <param name="reduction_2" value="apca"/> + <param name="dims_2" value="8"/> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindMultiModalNeighbors"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/multimodalneighbors.rds" ftype="rds" compare="sim_size"/> + </test> + <test expect_num_outputs="2"> + <!-- test3: FindClusters --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/neighbors.rds"/> + <conditional name="method"> + <param name="method" value="FindClusters"/> + <param name="resolution" value="0.8"/> + <conditional name="algorithm"> + <param name="algorithm" value="1"/> + </conditional> + <param name="n_start" value="10"/> + <param name="n_iter" value="10"/> + <param name="random_seed" value="0"/> + <param name="group_singletons" value="TRUE"/> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindClusters"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/clusters.rds" ftype="rds" compare="sim_size"/> + </test> + <test expect_num_outputs="2"> + <!-- test4: FindClusters - leidenalg Installed --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/neighbors.rds"/> + <conditional name="method"> + <param name="method" value="FindClusters"/> + <param name="modularity_fxn" value="1"/> + <param name="resolution" value="0.5"/> + <conditional name="algorithm"> + <param name="algorithm" value="4"/> + <param name="method_cluster" value="matrix"/> + </conditional> + <param name="n_start" value="10"/> + <param name="n_iter" value="10"/> + <param name="random_seed" value="0"/> + <param name="group_singletons" value="TRUE"/> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindClusters"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/clusters_leiden.rds" ftype="rds" compare="sim_size"/> + </test> + <test expect_num_outputs="3"> + <!-- test5: FindAllMarkers --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> + <conditional name="method"> + <param name="method" value="FindAllMarkers"/> + <param name="logfc_threshold" value="0.1"/> + <param name="slot" value="data"/> + <conditional name="test_use"> + <param name="test_use" value="wilcox"/> + </conditional> + <conditional name="set_top_markers"> + <param name="set_top_markers" value="true"/> + </conditional> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindAllMarkers"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/allmarkers.rds" ftype="rds"/> + <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/allmarkers.csv" ftype="csv"> + <assert_contents> + <has_text_matching expression="avg_log2FC"/> + </assert_contents> + </output> + </test> + <test expect_num_outputs="3"> + <!-- test6: FindMarkers - Default --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> + <conditional name="method"> + <param name="method" value="FindMarkers"/> + <param name="slot" value="data"/> + <conditional name="cells"> + <param name="cells" value="false"/> + </conditional> + <conditional name="ident"> + <param name="ident" value="true"/> + <param name="ident_1" value="0"/> + <param name="ident_2" value="1"/> + </conditional> + <param name="logfc_threshold" value="0.1"/> + <conditional name="test_use"> + <param name="test_use" value="wilcox"/> + </conditional> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindMarkers"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/markers.rds" ftype="rds"/> + <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markers.csv" ftype="csv"> + <assert_contents> + <has_text_matching expression="avg_log2FC"/> + </assert_contents> + </output> + </test> + <test expect_num_outputs="3"> + <!-- test7: FindMarkers - Limma Installed --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> + <conditional name="method"> + <param name="method" value="FindMarkers"/> + <param name="slot" value="data"/> + <conditional name="cells"> + <param name="cells" value="false"/> + </conditional> + <conditional name="ident"> + <param name="ident" value="true"/> + <param name="ident_1" value="0"/> + <param name="ident_2" value="1"/> + </conditional> + <param name="logfc_threshold" value="0.1"/> + <conditional name="test_use"> + <param name="test_use" value="wilcox_limma"/> + </conditional> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindMarkers"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/markersLimma.rds" ftype="rds"/> + <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markersLimma.csv" ftype="csv"> + <assert_contents> + <has_text_matching expression="avg_log2FC"/> + </assert_contents> + </output> + </test> + <test expect_num_outputs="3"> + <!-- test8: FindMarkers - MAST Installed --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> + <conditional name="method"> + <param name="method" value="FindMarkers"/> + <param name="slot" value="data"/> + <conditional name="cells"> + <param name="cells" value="false"/> + </conditional> + <conditional name="ident"> + <param name="ident" value="true"/> + <param name="ident_1" value="0"/> + <param name="ident_2" value="1"/> + </conditional> + <param name="logfc_threshold" value="0.1"/> + <conditional name="test_use"> + <param name="test_use" value="MAST"/> + </conditional> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindMarkers"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/markersMAST.rds" ftype="rds"/> + <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markersMAST.csv" ftype="csv"> + <assert_contents> + <has_text_matching expression="avg_log2FC"/> + </assert_contents> + </output> + </test> + <test expect_num_outputs="3"> + <!-- test9: FindMarkers - DESeq2 Installed --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> + <conditional name="method"> + <param name="method" value="FindMarkers"/> + <param name="slot" value="counts"/> + <conditional name="cells"> + <param name="cells" value="false"/> + </conditional> + <conditional name="ident"> + <param name="ident" value="true"/> + <param name="ident_1" value="0"/> + <param name="ident_2" value="1"/> + </conditional> + <param name="logfc_threshold" value="0.1"/> + <conditional name="test_use"> + <param name="test_use" value="DESeq2"/> + </conditional> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindMarkers"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/markersDESeq2.rds" ftype="rds"/> + <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markersDESeq2.csv" ftype="csv"> + <assert_contents> + <has_text_matching expression="avg_log2FC"/> + </assert_contents> + </output> + </test> + <test expect_num_outputs="3"> + <!-- test10: FindConservedMarkers --> + <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/integrated_umap.rds"/> + <conditional name="method"> + <param name="method" value="FindConservedMarkers"/> + <param name="ident_1" value="0"/> + <param name="ident_2" value="1"/> + <param name="grouping_var" value="Group"/> + </conditional> + <section name="advanced_common"> + <param name="show_log" value="true"/> + </section> + <output name="hidden_output"> + <assert_contents> + <has_text_matching expression="FindConservedMarkers"/> + </assert_contents> + </output> + <output name="rds_out" location="https://zenodo.org/records/13732784/files/conserved_markers.rds" ftype="rds"/> + <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/conserved_markers.csv" ftype="csv"> + <assert_contents> + <has_text_matching expression="Group_B_avg_log2FC"/> + </assert_contents> + </output> + </test> + </tests> + <help><![CDATA[ +Seurat +====== + +Seurat is an R package designed for QC, analysis, and exploration of single-cell RNA-seq data. + +Seurat aims to enable users to identify and interpret sources of heterogeneity from single-cell transcriptomic measurements, and to integrate diverse types of single-cell data. + +FindNeighbors +============= + +Compute the k.param nearest neighbors for a given dataset. + +Can also optionally (via compute.SNN), construct a shared nearest neighbor graph by calculating the neighborhood overlap (Jaccard index) between every cell and its k.param nearest neighbors. + +More details on the `seurat documentation +<https://satijalab.org/seurat/reference/findneighbors>`__ + +FindMultiModalNeighbors +======================= + +This function will construct a weighted nearest neighbor (WNN) graph for two modalities (e.g. RNA-seq and CITE-seq). For each cell, we identify the nearest neighbors based on a weighted combination of two modalities. + +Takes as input two dimensional reductions, one computed for each modality. + +More details on the `seurat documentation +<https://satijalab.org/seurat/reference/findmultimodalneighbors>`__ + +FindClusters +============ + +Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. + +First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. + +More details on the `seurat documentation +<https://satijalab.org/seurat/reference/findclusters>`__ + + +FindAllMarkers +============== + +Find markers (differentially expressed genes) for each of the identity classes in a dataset + +Outputs a matrix containing a ranked list of putative markers, and associated statistics (p-values, ROC score, etc.) + +Methods: + +"wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed + +"wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4 + +"bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013) + +"roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes. + +"t" : Identify differentially expressed genes between two groups of cells using Student's t-test. + +"negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets + +"poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets + +"LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test. + +"MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing. + +"DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. + +More details on the `seurat documentation +<https://satijalab.org/seurat/reference/findallmarkers>`__ + +FindMarkers +=========== + +Find markers (differentially expressed genes) for identity classes (clusters) or groups of cells + +Outputs a data.frame with a ranked list of putative markers as rows, and associated statistics as columns (p-values, ROC score, etc., depending on the test used (test.use)). + +Methods - as for FindAllMarkers + +More details on the `seurat documentation +<https://satijalab.org/seurat/reference/findmarkers>`__ + +FindConservedMarkers +==================== + +Finds markers that are conserved between the groups + +Uses metap::minimump as meta.method. + +More details on the `seurat documentation +<https://satijalab.org/seurat/reference/findconservedmarkers>`__ + + ]]></help> + <expand macro="citations"/> +</tool> \ No newline at end of file