Mercurial > repos > iuc > seurat_clustering
view neighbors_clusters_markers.xml @ 1:51eb02d9b17a draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/seurat_v5 commit 566984b588e88225f0b3f2dae88c6fd084315e7c
author | iuc |
---|---|
date | Tue, 05 Nov 2024 11:54:58 +0000 |
parents | 94f1b9c7286f |
children |
line wrap: on
line source
<tool id="seurat_clustering" name="Seurat Find Clusters" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> <description>- Neighbors and Markers</description> <macros> <import>macros.xml</import> </macros> <expand macro="bio_tools"/> <expand macro="requirements"/> <expand macro="version_command"/> <command detect_errors="exit_code"><![CDATA[ @CMD@ ]]></command> <configfiles> <configfile name="script_file"><![CDATA[ @CMD_imports@ @CMD_read_inputs@ #if $method.method == 'FindNeighbors' seurat_obj<-FindNeighbors( seurat_obj, #if $method.reduction != '' reduction = '$method.reduction', #end if #if $method.dims != '' dims = 1:$method.dims, #end if k.param = $method.k_param, nn.method = '$method.nn_method.nn_method', #if $method.nn_method.nn_method == 'rann' nn.eps = $method.nn_method.nn_eps, #else if $method.nn_method.nn_method == 'annoy' annoy.metric = '$method.nn_method.annoy_metric', #end if compute.snn = $method.adv.compute_snn.compute_snn, #if $method.adv.compute_snn.compute_snn == 'TRUE' #if $method.adv.compute_snn.prune_snn prune.snn = $method.adv.compute_snn.prune_snn, #end if distance.matrix = $method.adv.compute_snn.distance_matrix, #else if $method.adv.compute_snn.compute_snn == 'FALSE' distance.matrix = $method.adv.compute_snn.distance_matrix.distance_matrix, #if $method.adv.compute_snn.distance_matrix.distance_matrix == 'FALSE' return.neighbor = $method.adv.compute_snn.distance_matrix.return_neighbor, #end if #end if l2.norm = $method.adv.l2_norm, n.trees = $method.adv.n_trees ) #else if $method.method == 'FindMultiModalNeighbors' seurat_obj<-FindMultiModalNeighbors( seurat_obj, reduction.list = list('$method.reduction_1', '$method.reduction_2'), dims.list = list(1:$method.dims_1, 1:$method.dims_2), k.nn = $method.k_nn, knn.graph.name = '$method.adv.knn_graph_name', snn.graph.name = '$method.adv.snn_graph_name', weighted.nn.name = '$method.adv.weighted_nn_name', #if $method.adv.modality_weight_name != '' modality.weight.name = '$method.adv.modality_weight_name', #end if knn.range = $method.adv.knn_range ) #else if $method.method == 'FindClusters' @reticulate_hack@ seurat_obj<-FindClusters( seurat_obj, modularity.fxn = $method.modularity_fxn, resolution = $method.resolution, algorithm = $method.algorithm.algorithm, #if $method.algorithm.algorithm == '4' #if $method.algorithm.initial_membership initial.membership = $method.algorithm.initial_membership, #end if #if $method.algorithm.node_sizes node.sizes = $method.algorithm.node_sizes, #end if method = '$method.algorithm.method_cluster', #end if n.start = $method.n_start, n.iter = $method.n_iter, random.seed = $method.random_seed, #if $method.graph_name != '' graph.name = '$method.graph_name', #end if #if $method.cluster_name != '' cluster.name = '$method.cluster_name' #end if ) #else if $method.method == 'FindAllMarkers' #if $method.features features_list<-paste(readLines('$method.features'), collapse=",") #end if seurat_obj<-FindAllMarkers( seurat_obj, #if $method.features features = c(unlist(strsplit(features_list, ","))), #end if logfc.threshold = $method.logfc_threshold, test.use = '$method.test_use.test_use', #if $method.test_use.test_use == 'negbinom' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if min.cells.feature = $method.test_use.min_cells_feature, #else if $method.test_use.test_use == 'poisson' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if min.cells.feature = $method.test_use.min_cells_feature, #else if $method.test_use.test_use =='LR' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if #else if $method.test_use.test_use == 'MAST' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if #else if $method.test_use.test_use == 'roc' return.thresh = $method.test_use.return_thresh, #end if slot = '$method.slot', #if $method.adv.assay != '' assay = '$method.adv.assay', #end if min.pct = $method.adv.min_pct, #if $method.adv.min_diff_pct min.diff.pct = $method.adv.min_diff_pct, #end if only.pos = $method.adv.only_pos, #if $method.adv.max_cells_per_ident max.cells.per.ident = $method.adv.max_cells_per_ident, #end if #if $method.adv.random_seed random.seed = $method.adv.random_seed, #end if min.cells.group = $method.adv.min_cells_group, #if $method.fc_name != '' fc.name = '$method.adv.fc_name', #end if base = $method.adv.base, densify = $method.adv.densify ) #if $method.set_top_markers.set_top_markers == 'true' N = $method.set_top_markers.topN seurat_obj<-dplyr::slice_head(seurat_obj, n = N, by = cluster) #end if @CMD_write_markers_tab@ #else if $method.method == 'FindMarkers' #if $method.features features_list<-paste(readLines('$method.features'), collapse=",") #end if #if $method.cells.cells == 'true' cell_1_list<-paste(readLines('$method.cells_1'), collapse=",") cell_2_list<-paste(readLines('$method.cells_2'), collapse=",") #end if seurat_obj<-FindMarkers( seurat_obj, slot = '$method.slot', #if $method.cells.cells == 'true' cells.1 = c(unlist(strsplit(cell_1_list, ","))), cells.2 = c(unlist(strsplit(cell_2_list, ","))), #end if #if $method.regroup.regroup == 'true' group.by = '$method.regroup.group_by', #if $method.regroup.subset_ident != '' subset.ident = '$method.regroup.subset_ident', #end if #end if #if $method.ident.ident == 'true' ident.1 = '$method.ident.ident_1', #if $method.ident.ident_2 != '' ident.2 = c(unlist(strsplit(gsub(" ", "", '$method.ident.ident_2'), ","))), #end if #end if #if $method.features features = c(unlist(strsplit(features_list, ","))), #end if logfc.threshold = $method.logfc_threshold, test.use = '$method.test_use.test_use', #if $method.test_use.test_use == 'negbinom' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if min.cells.feature = $method.test_use.min_cells_feature, #else if $method.test_use.test_use == 'poisson' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if min.cells.feature = $method.test_use.min_cells_feature, #else if $method.test_use.test_use =='LR' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if #else if $method.test_use.test_use == 'MAST' #if $method.test_use.latent_vars != '' latent.vars = c(unlist(strsplit(gsub(" ", "", '$method.test_use.latent_vars'), ","))), #end if #end if #if $method.adv.assay != '' assay = '$method.adv.assay', #end if min.pct = $method.adv.min_pct, #if $method.adv.min_diff_pct min.diff.pct = $method.adv.min_diff_pct, #end if only.pos = $method.adv.only_pos, #if $method.adv.max_cells_per_ident max.cells.per.ident = $method.adv.max_cells_per_ident, #end if #if $method.adv.random_seed random.seed = $method.adv.random_seed, #end if min.cells.group = $method.adv.min_cells_group, #if $method.adv.fc_name != '' fc.name = '$method.adv.fc_name', #end if densify = $method.adv.densify ) @CMD_write_markers_tab@ #else if $method.method == 'FindConservedMarkers' seurat_obj<-FindConservedMarkers( seurat_obj, ident.1 = $method.ident_1, #if $method.ident_2 != '' ident.2 = $method.ident_2, #end if grouping.var = '$method.grouping_var', #if $method.assay != '' assay = '$method.assay', #end if slot = '$method.slot', min.cells.group = $method.min_cells_group ) @CMD_write_markers_tab@ #end if @CMD_rds_write_outputs@ ]]></configfile> </configfiles> <inputs> <expand macro="input_rds"/> <conditional name="method"> <param name="method" type="select" label="Method used"> <option value="FindNeighbors">Compute nearest neighbors with 'FindNeighbors'</option> <option value="FindMultiModalNeighbors">Compute nearest neighbors for multimodal data with 'FindMultiModalNeighbors'</option> <option value="FindClusters">Identify cell clusters with 'FindClusters'</option> <option value="FindAllMarkers">Identify marker genes with 'FindAllMarkers'</option> <option value="FindMarkers">Identify marker genes for specific groups with 'FindMarkers'</option> <option value="FindConservedMarkers">Find markers conserved between groups with 'FindConservedMarkers'</option> </param> <when value="FindNeighbors"> <expand macro="select_reduction_pca"/> <expand macro="set_dims"/> <param name="k_param" type="integer" value="20" label="Set k for k-nearest neighbors" help="(k.param)"/> <conditional name="nn_method"> <param name="nn_method" type="select" label="Method for finding nearest neighbors" help="(nn.method)"> <option value="rann">rann</option> <option value="annoy" selected="true">annoy</option> </param> <when value="rann"> <param name="nn_eps" type="float" value="0.0" label="Set error bound for nearest neighbor search" help="(nn.eps)"/> </when> <when value="annoy"> <param name="annoy_metric" type="select" label="Distance metric for annoy method" help="(annoy.metric)"> <option value="euclidean" selected="true">euclidean</option> <option value="cosine">cosine</option> <option value="manhattan">manhattan</option> <option value="hamming">hamming</option> </param> </when> </conditional> <section name="adv" title="Advanced Options"> <param name="n_trees" type="integer" value="50" label="Number of trees for nearest neighbor search" help="(n.trees)"/> <param name="l2_norm" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="false" label="Take l2Norm of data" help="(l2.norm)"/> <conditional name="compute_snn"> <param name="compute_snn" type="select" label="Compute the shared nearest neighbor (SNN) graph" help="(compute.snn)"> <option value="FALSE">No</option> <option value="TRUE" selected="true">Yes</option> </param> <when value="FALSE"> <conditional name="distance_matrix"> <param name="distance_matrix" type="select" label="Use a distance matrix" help="(distance.matrix)"> <option value="FALSE" selected="true">No</option> <option value="TRUE">Yes</option> </param> <when value="FALSE"> <param name="return_neighbor" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="false" label="Return result as neighbor object" help="(return.neighbor)"/> </when> <when value="TRUE"></when> </conditional> </when> <when value="TRUE"> <param name="prune_snn" type="float" optional="true" value="" min="0" max="1" label="Set cutoff for Jaccard index when computing overlap for SNN" help="0 no pruning, 1 prune everything (prune.SNN)"/> <param name="distance_matrix" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="false" label="Use a distance matrix" help="(distance.matrix)"/> </when> </conditional> </section> </when> <when value="FindMultiModalNeighbors"> <param name="reduction_1" type="text" value="pca" label="Reduction to use for first modality"> <expand macro="valid_name"/> </param> <param name="dims_1" type="integer" value="10" label="Number of dimensions to use from first reduction"/> <param name="reduction_2" type="text" value="apca" label="Reduction to use for second modality"> <expand macro="valid_name"/> </param> <param name="dims_2" type="integer" value="10" label="Number of dimensions to use from second reduction"/> <param name="k_nn" type="integer" value="20" label="Number of multimodal neighbors to compute" help="(k.nn)"/> <section name="adv" title="Advanced Options"> <param name="knn_graph_name" type="text" value="wknn" label="Name for multimodal knn graph" help="(knn.graph.name)"> <expand macro="valid_name"/> </param> <param name="snn_graph_name" type="text" value="wsnn" label="Name for multimodal snn graph" help="(snn.graph.name)"> <expand macro="valid_name"/> </param> <param name="weighted_nn_name" type="text" value="weighted.nn" label="Name for multimodal neighbor object" help="(weighted.nn.name)"> <expand macro="valid_name"/> </param> <param name="modality_weight_name" optional="true" type="text" value="" label="Name for storing modality weights in metadata" help="(modality.weight.name)"> <expand macro="valid_name"/> </param> <param name="knn_range" type="integer" value="200" label="Number of approximate neighbors to compute" help="(knn.range)"/> </section> </when> <when value="FindClusters"> <param name="modularity_fxn" type="select" label="Select modularity function" help="(modularity.fxn)"> <option value="1" selected="true">standard</option> <option value="2">alternative</option> </param> <param argument="resolution" type="float" value="0.8" label="Resolution"/> <conditional name="algorithm"> <param argument="algorithm" type="select" label="Algorithm for modularity optimization"> <option value="1" selected="true">1. Original Louvain</option> <option value="2">2. Louvain with multilevel refinement</option> <option value="3">3. SLM</option> <option value="4">4. Leiden</option> </param> <when value="4"> <param name="initial_membership" type="integer" optional="true" value="" label="Set initial membership when using Python leidenalg function" help="defaults to singleton partition (initial.membership)"/> <param name="node_sizes" type="integer" optional="true" value="" label="Set node size when using Python leidenalg function" help="(node.sizes)"/> <param name="method_cluster" type="select" label="Method for leiden" help="matrix is fast for small data, enable igraph for larger data (method.cluster)"> <option value="matrix" selected="true">matrix</option> <option value="igraph">igraph</option> </param> </when> <when value="1"> </when> <when value="2"> </when> <when value="3"> </when> </conditional> <param name="n_start" type="integer" value="10" label="Number of random starts" help="(n.start)"/> <param name="n_iter" type="integer" value="10" label="Maximal number of iterations per random start" help="(n.iter)"/> <param name="random_seed" type="integer" value="0" label="Set random seed" help="(random.seed)"/> <param name="group_singletons" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="true" label="Group singletons into nearest cluster" help="Set to false to create a cluster for all singletons (group.singletons)"/> <param name="graph_name" type="text" optional="true" value="" label="Name of graph to use for the clustering algorithm" help="(graph.name)"> <expand macro="valid_name"/> </param> <param name="cluster_name" type="text" optional="true" value="" label="Name for output clusters" help="(cluster.name)"> <expand macro="valid_name"/> </param> </when> <when value="FindAllMarkers"> <expand macro="markers_inputs"/> <conditional name="set_top_markers"> <param name="set_top_markers" type="select" label="Limit output to top N markers per cluster"> <option value="true">Yes</option> <option value="false" selected="true">No</option> </param> <when value="true"> <expand macro="set_topN"/> </when> <when value="false"> </when> </conditional> <section name="adv" title="Advanced Options"> <param argument="base" type="integer" value="2" label="Base with respect to which logarithms are computed"/> <expand macro="advanced_markers_inputs"/> </section> </when> <when value="FindMarkers"> <conditional name="cells"> <param name="cells" type="select" label="Compare markers for two groups of cells"> <option value="true">Yes</option> <option value="false" selected="true">No</option> </param> <when value="true"> <param name="cells_1" type="data" format="txt,tabular" label="List of cell names for group 1" help="text file with one cell on each line (cells.1)"/> <param name="cells_2" type="data" format="txt,tabular" label="List of cell names for group 2" help="text file with one cell on each line (cells.2)"/> </when> <when value="false"> </when> </conditional> <conditional name="regroup"> <param name="regroup" type="select" label="Change cell identities before finding markers"> <option value="true">Yes</option> <option value="false" selected="true">No</option> </param> <when value="true"> <param name="group_by" type="text" value="group" label="Name of identity class to regroup cells into" help="a group from the cell metadata to find markers for (group.by)"/> <param name="subset_ident" type="text" optional="true" value="" label="Identity class to subset before regrouping" help="only include cells from this cluster/identity in each new group (subset.ident)"/> </when> <when value="false"> </when> </conditional> <conditional name="ident"> <param name="ident" type="select" label="Compare markers between clusters of cells"> <option value="true">Yes</option> <option value="false" selected="true">No</option> </param> <when value="true"> <param name="ident_1" type="text" optional="true" value="" label="Identity class to define markers for" help="e.g. cluster number or ident group name (ident.1)"/> <param name="ident_2" type="text" optional="true" value="" label="Second identity class to compare" help="e.g. comma-separated list of cluster numbers or idents, leave blank to compare ident.1 against all other clusters. (ident.2)"> <expand macro="valid_list"/> </param> </when> <when value="false"> </when> </conditional> <expand macro="markers_inputs"/> <section name="adv" title="Advanced Options"> <expand macro="advanced_markers_inputs"/> </section> </when> <when value="FindConservedMarkers"> <param name="ident_1" type="text" value="ident1" label="Identity class to define markers for" help="(ident.1)"/> <param name="ident_2" type="text" optional="true" value="" label="Second identity class for comparison" help="leave blank to compare ident.1 to all other cells (ident.2)"/> <param name="grouping_var" type="text" value="group" label="Grouping variable" help="(grouping.var)"/> <expand macro="select_assay_RNA"/> <expand macro="select_slot_data"/> <param name="min_cells_group" type="integer" value="3" label="Minimum number of cells in one group" help="(min.cells.group)"/> </when> </conditional> <expand macro="inputs_common_advanced"/> </inputs> <outputs> <expand macro="seurat_outputs"/> <expand macro="markers_out"/> </outputs> <tests> <test expect_num_outputs="2"> <!-- test1: FindNeighbors --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/pca.rds"/> <conditional name="method"> <param name="method" value="FindNeighbors"/> <param name="dims" value="9"/> <conditional name="nn_method"> <param name="nn_method" value="annoy"/> <param name="annoy_metric" value="euclidean"/> </conditional> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindNeighbors"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/neighbors.rds" ftype="rds" compare="sim_size"/> </test> <test expect_num_outputs="2"> <!-- test2: FindMultiModalNeighbors --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/citeseq_dims.rds"/> <conditional name="method"> <param name="method" value="FindMultiModalNeighbors"/> <param name="reduction_1" value="pca"/> <param name="dims_1" value="8"/> <param name="reduction_2" value="apca"/> <param name="dims_2" value="8"/> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindMultiModalNeighbors"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/multimodalneighbors.rds" ftype="rds" compare="sim_size"/> </test> <test expect_num_outputs="2"> <!-- test3: FindClusters --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/neighbors.rds"/> <conditional name="method"> <param name="method" value="FindClusters"/> <param name="resolution" value="0.8"/> <conditional name="algorithm"> <param name="algorithm" value="1"/> </conditional> <param name="n_start" value="10"/> <param name="n_iter" value="10"/> <param name="random_seed" value="0"/> <param name="group_singletons" value="TRUE"/> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindClusters"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/clusters.rds" ftype="rds" compare="sim_size"/> </test> <test expect_num_outputs="2"> <!-- test4: FindClusters - leidenalg Installed --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/neighbors.rds"/> <conditional name="method"> <param name="method" value="FindClusters"/> <param name="modularity_fxn" value="1"/> <param name="resolution" value="0.5"/> <conditional name="algorithm"> <param name="algorithm" value="4"/> <param name="method_cluster" value="matrix"/> </conditional> <param name="n_start" value="10"/> <param name="n_iter" value="10"/> <param name="random_seed" value="0"/> <param name="group_singletons" value="TRUE"/> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindClusters"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/clusters_leiden.rds" ftype="rds" compare="sim_size"/> </test> <test expect_num_outputs="3"> <!-- test5: FindAllMarkers --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> <conditional name="method"> <param name="method" value="FindAllMarkers"/> <param name="logfc_threshold" value="0.1"/> <param name="slot" value="data"/> <conditional name="test_use"> <param name="test_use" value="wilcox"/> </conditional> <conditional name="set_top_markers"> <param name="set_top_markers" value="true"/> </conditional> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindAllMarkers"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/allmarkers.rds" ftype="rds"/> <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/allmarkers.csv" ftype="csv"> <assert_contents> <has_text_matching expression="avg_log2FC"/> </assert_contents> </output> </test> <test expect_num_outputs="3"> <!-- test6: FindMarkers - Default --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> <conditional name="method"> <param name="method" value="FindMarkers"/> <param name="slot" value="data"/> <conditional name="cells"> <param name="cells" value="false"/> </conditional> <conditional name="ident"> <param name="ident" value="true"/> <param name="ident_1" value="0"/> <param name="ident_2" value="1"/> </conditional> <param name="logfc_threshold" value="0.1"/> <conditional name="test_use"> <param name="test_use" value="wilcox"/> </conditional> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindMarkers"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/markers.rds" ftype="rds"/> <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markers.csv" ftype="csv"> <assert_contents> <has_text_matching expression="avg_log2FC"/> </assert_contents> </output> </test> <test expect_num_outputs="3"> <!-- test7: FindMarkers - Limma Installed --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> <conditional name="method"> <param name="method" value="FindMarkers"/> <param name="slot" value="data"/> <conditional name="cells"> <param name="cells" value="false"/> </conditional> <conditional name="ident"> <param name="ident" value="true"/> <param name="ident_1" value="0"/> <param name="ident_2" value="1"/> </conditional> <param name="logfc_threshold" value="0.1"/> <conditional name="test_use"> <param name="test_use" value="wilcox_limma"/> </conditional> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindMarkers"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/markersLimma.rds" ftype="rds"/> <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markersLimma.csv" ftype="csv"> <assert_contents> <has_text_matching expression="avg_log2FC"/> </assert_contents> </output> </test> <test expect_num_outputs="3"> <!-- test8: FindMarkers - MAST Installed --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> <conditional name="method"> <param name="method" value="FindMarkers"/> <param name="slot" value="data"/> <conditional name="cells"> <param name="cells" value="false"/> </conditional> <conditional name="ident"> <param name="ident" value="true"/> <param name="ident_1" value="0"/> <param name="ident_2" value="1"/> </conditional> <param name="logfc_threshold" value="0.1"/> <conditional name="test_use"> <param name="test_use" value="MAST"/> </conditional> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindMarkers"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/markersMAST.rds" ftype="rds"/> <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markersMAST.csv" ftype="csv"> <assert_contents> <has_text_matching expression="avg_log2FC"/> </assert_contents> </output> </test> <test expect_num_outputs="3"> <!-- test9: FindMarkers - DESeq2 Installed --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/clusters.rds"/> <conditional name="method"> <param name="method" value="FindMarkers"/> <param name="slot" value="counts"/> <conditional name="cells"> <param name="cells" value="false"/> </conditional> <conditional name="ident"> <param name="ident" value="true"/> <param name="ident_1" value="0"/> <param name="ident_2" value="1"/> </conditional> <param name="logfc_threshold" value="0.1"/> <conditional name="test_use"> <param name="test_use" value="DESeq2"/> </conditional> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindMarkers"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/markersDESeq2.rds" ftype="rds"/> <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/markersDESeq2.csv" ftype="csv"> <assert_contents> <has_text_matching expression="avg_log2FC"/> </assert_contents> </output> </test> <test expect_num_outputs="3"> <!-- test10: FindConservedMarkers --> <param name="seurat_rds" location="https://zenodo.org/records/13732784/files/integrated_umap.rds"/> <conditional name="method"> <param name="method" value="FindConservedMarkers"/> <param name="ident_1" value="0"/> <param name="ident_2" value="1"/> <param name="grouping_var" value="Group"/> </conditional> <section name="advanced_common"> <param name="show_log" value="true"/> </section> <output name="hidden_output"> <assert_contents> <has_text_matching expression="FindConservedMarkers"/> </assert_contents> </output> <output name="rds_out" location="https://zenodo.org/records/13732784/files/conserved_markers.rds" ftype="rds"/> <output name="markers_tabular" location="https://zenodo.org/records/13732784/files/conserved_markers.csv" ftype="csv"> <assert_contents> <has_text_matching expression="Group_B_avg_log2FC"/> </assert_contents> </output> </test> </tests> <help><![CDATA[ Seurat ====== Seurat is an R package designed for QC, analysis, and exploration of single-cell RNA-seq data. Seurat aims to enable users to identify and interpret sources of heterogeneity from single-cell transcriptomic measurements, and to integrate diverse types of single-cell data. FindNeighbors ============= Compute the k.param nearest neighbors for a given dataset. Can also optionally (via compute.SNN), construct a shared nearest neighbor graph by calculating the neighborhood overlap (Jaccard index) between every cell and its k.param nearest neighbors. More details on the `seurat documentation <https://satijalab.org/seurat/reference/findneighbors>`__ FindMultiModalNeighbors ======================= This function will construct a weighted nearest neighbor (WNN) graph for two modalities (e.g. RNA-seq and CITE-seq). For each cell, we identify the nearest neighbors based on a weighted combination of two modalities. Takes as input two dimensional reductions, one computed for each modality. More details on the `seurat documentation <https://satijalab.org/seurat/reference/findmultimodalneighbors>`__ FindClusters ============ Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. More details on the `seurat documentation <https://satijalab.org/seurat/reference/findclusters>`__ FindAllMarkers ============== Find markers (differentially expressed genes) for each of the identity classes in a dataset Outputs a matrix containing a ranked list of putative markers, and associated statistics (p-values, ROC score, etc.) Methods: "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4 "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013) "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes. "t" : Identify differentially expressed genes between two groups of cells using Student's t-test. "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test. "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing. "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. More details on the `seurat documentation <https://satijalab.org/seurat/reference/findallmarkers>`__ FindMarkers =========== Find markers (differentially expressed genes) for identity classes (clusters) or groups of cells Outputs a data.frame with a ranked list of putative markers as rows, and associated statistics as columns (p-values, ROC score, etc., depending on the test used (test.use)). Methods - as for FindAllMarkers More details on the `seurat documentation <https://satijalab.org/seurat/reference/findmarkers>`__ FindConservedMarkers ==================== Finds markers that are conserved between the groups Uses metap::minimump as meta.method. More details on the `seurat documentation <https://satijalab.org/seurat/reference/findconservedmarkers>`__ ]]></help> <expand macro="citations"/> </tool>