# HG changeset patch # User iuc # Date 1726050097 0 # Node ID 94f1b9c7286f08b27bf864d2e52ad5876fde31b5 planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/seurat_v5 commit a9214c07b0cc929a51fd92a369bb89c675b6c88d diff -r 000000000000 -r 94f1b9c7286f macros.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/macros.xml Wed Sep 11 10:21:37 2024 +0000 @@ -0,0 +1,437 @@ + + 5.0 + 0 + 23.0 + + + r-seurat + fit-sne + bioconductor-limma + bioconductor-mast + bioconductor-deseq2 + r-svglite + r-metap + bioconductor-glmGamPoi + umap-learn + leidenalg + r-harmony + bioconductor-batchelor + numpy + pandas + + + + + 10.1038/s41587-023-01767-y + + + + + + + + + + + + + + + + + + /dev/null | grep -v -i "WARNING: ") + ]]> + + + + + + + + + + + + ] + + $hidden_output && +Rscript '$script_file' >> $hidden_output + ]]> + + +
+ +
+
+ + + advanced_common['show_log'] + + + + + method['method'] != 'Inspect' + + + + + + + + method['method'] == 'FindVariableFeatures' or method['method'] == 'SCTransform' + method['output_topN']['output_topN'] == 'true' + + + + + + + method['method'] == 'FindAllMarkers' or method['method'] == 'FindMarkers' or method['method'] == 'FindConservedMarkers' + + + + + + + method['method'] == 'RunPCA' and method['print_pcs']['print_pcs'] == 'true' + + + + + method['method'] == 'Inspect' and method['inspect']['inspect'] != 'General' + + + method['method'] == 'Inspect' and method['inspect']['inspect'] == 'General' + + + + + + + plot_format == 'png' + + + plot_format == 'pdf' + + + plot_format == 'svg' + + + plot_format == 'jpeg' + + + plot_format == 'tex' + + + plot_format == 'tiff' + + + plot_format == 'eps' + + + + + + + ^[\w\-.]+$ + + + ^[A-Za-z_]+$ + + + ^[\w\-., ]+$ + + + ^[\w[:punct:]]+$ + + + ^[\w[:punct:]]+$ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
diff -r 000000000000 -r 94f1b9c7286f neighbors_clusters_markers.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/neighbors_clusters_markers.xml Wed Sep 11 10:21:37 2024 +0000 @@ -0,0 +1,831 @@ + + - Neighbors and Markers + + macros.xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + +
+ + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ + + + + + + + +
+ +
+ + + + + + + + + + + + + + + + +
+ +
+ + + + + + +
+ + + + + + + + + + +
+ +
+ + + + + + +
+ + + + + + + + + + + + + + +
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + +
+ +
+ + + + + + +
+ + + + + + + + + + + + + + +
+ +
+ + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + + + + + + + +
+
+ `__ + +FindMultiModalNeighbors +======================= + +This function will construct a weighted nearest neighbor (WNN) graph for two modalities (e.g. RNA-seq and CITE-seq). For each cell, we identify the nearest neighbors based on a weighted combination of two modalities. + +Takes as input two dimensional reductions, one computed for each modality. + +More details on the `seurat documentation +`__ + +FindClusters +============ + +Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. + +First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. + +More details on the `seurat documentation +`__ + + +FindAllMarkers +============== + +Find markers (differentially expressed genes) for each of the identity classes in a dataset + +Outputs a matrix containing a ranked list of putative markers, and associated statistics (p-values, ROC score, etc.) + +Methods: + +"wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed + +"wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4 + +"bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013) + +"roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes. + +"t" : Identify differentially expressed genes between two groups of cells using Student's t-test. + +"negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets + +"poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets + +"LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test. + +"MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing. + +"DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. + +More details on the `seurat documentation +`__ + +FindMarkers +=========== + +Find markers (differentially expressed genes) for identity classes (clusters) or groups of cells + +Outputs a data.frame with a ranked list of putative markers as rows, and associated statistics as columns (p-values, ROC score, etc., depending on the test used (test.use)). + +Methods - as for FindAllMarkers + +More details on the `seurat documentation +`__ + +FindConservedMarkers +==================== + +Finds markers that are conserved between the groups + +Uses metap::minimump as meta.method. + +More details on the `seurat documentation +`__ + + ]]> + +
\ No newline at end of file