Mercurial > repos > iuc > umi_tools_dedup
view umi-tools_dedup.xml @ 4:3002bdffadd5 draft
planemo upload commit c79a5f4a05156bb2a6035a844aa9ad8f0e59ecb5
author | iuc |
---|---|
date | Thu, 21 Jun 2018 15:19:39 -0400 |
parents | a6477bafd522 |
children | 1692b1acebfd |
line wrap: on
line source
<tool id="umi_tools_dedup" name="UMI-tools deduplicate" version="@VERSION@.0"> <description>Extract UMI from fastq files</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"> <requirement type="package" version="1.6">samtools</requirement> </expand> <command detect_errors="exit_code"><![CDATA[ #if $input.is_of_type("sam"): #set $input_file = $input #else: ln -sf '${input}' 'input.bam' && ln -sf '$input.metadata.bam_index' 'input.bam.bai' && #set $input_file = 'input.bam' #end if umi_tools dedup --random-seed 0 --extract-umi-method $extract_umi_method #if str($extract_umi_method) != 'read_id': --umi-separator '$umi_separator' --umi-tag '$umi_tag' #end if --method $method --edit-distance-threshold $edit_distance_threshold $paired $spliced_is_unique --soft-clip-threshold $soft_clip_threshold $read_length $whole_contig --subset $subset $per_contig $per_gene #if $gene_transcript_map: --gene-transcript-map '$gene_transcript_map' #end if #if len(str($gene_tag)) > 0: --gene-tag '$gene_tag' #end if #if $input.is_of_type("sam"): --in-sam #end if -I '$input_file' -S deduped.bam && samtools sort deduped.bam -@ \${GALAXY_SLOTS:-1} -o '$output' -O BAM ]]></command> <inputs> <param name="input" type="data" format="sam,bam" label="Reads to deduplicate in SAM or BAM format" /> <param name="extract_umi_method" argument="--extract-umi-method" type="select"> <option value="read_id" selected="True">Read ID</option> <option value="tag">Tag</option> </param> <param name="umi_separator" argument="--umi-separator" type="text" label="Separator between read id and UMI." help="Ignored unless extracting by tag" /> <param name="umi_tag" argument="--umi-tag" type="text" label="Tag which contains UMI." /> <param argument="--method" type="select" label="Method used to identify PCR duplicates within reads." help="All methods start by identifying the reads with the same mapping position"> <option value="unique">Reads group share the exact same UMI</option> <option value="percentile">Reads group share the exact same UMI. UMIs with counts less than 1% of the median counts for UMIs at the same position are ignored</option> <option value="cluster">Identify clusters based on hamming distance</option> <option value="adjacency">Identify clusters based on hamming distance and resolve networks by using the node counts</option> <option value="directional">Identify clusters based on distance and counts, restrict network expansion by threshold</option> </param> <param name="edit_distance_threshold" argument="--edit-distance-threshold" type="integer" value="1" label="Edit distance threshold" help="For the adjacency and cluster methods the threshold for the edit distance to connect two UMIs in the network can be increased. The default value of 1 works best unless the UMI is very long (>14bp)" /> <param argument="--paired" type="boolean" truevalue="--paired" falsevalue="" label="BAM is paired end" help="This will also force the use of the template length to determine reads with the same mapping coordinates." /> <param name="spliced_is_unique" argument="--spliced-is-unique" type="boolean" truevalue="--spliced-is-unique" falsevalue="" label="Spliced reads are unique" help="Causes two reads that start in the same position on the same strand and having the same UMI to be considered unique if one is spliced and the other is not. (Uses the 'N' cigar operation to test for splicing)" /> <param name="soft_clip_threshold" argument="--soft-clip-threshold" type="integer" value="4" label="Soft clip threshold" help="Mappers that soft clip, will sometimes do so rather than mapping a spliced read if there is only a small overhang over the exon junction. By setting this option, you can treat reads with at least this many bases soft-clipped at the 3' end as spliced." /> <param name="read_length" argument="--read-length" type="boolean" truevalue="--read-length" falsevalue="" label="Use the read length as as a criterion when deduping" /> <param name="whole_contig" argument="--whole-contig" type="boolean" truevalue="--whole-contig" falsevalue="" label="Consider all alignments to a single contig together" help="This is useful if you have aligned to a transcriptome multi-fasta" /> <param argument="--subset" type="float" min="0.0" max="1.0" value="1.0" label="Only consider a random selection of the reads" /> <param argument="--chrom" type="boolean" truevalue="--chrom" falsevalue="" label="Only consider a single chromosome" /> <param name="per_contig" argument="--per-contig" type="boolean" truevalue="--per-contig" falsevalue="" label="Deduplicate per contig" help="Field 3 in BAM; RNAME. All reads with the same contig will be considered to have the same alignment position. This is useful if your library prep generates PCR duplicates with non identical alignment positions such as CEL-Seq. In this case, you would align to a reference transcriptome with one transcript per gene" /> <param name="per_gene" argument="--per-gene" type="boolean" truevalue="--per-gene" falsevalue="" label="Deduplicate per gene" help="As above except with this option you can align to a reference transcriptome with more than one transcript per gene. You need to also provide a map of genes to transcripts. This will also add a metacontig ('MC') tag to the output BAM file." /> <param name="gene_transcript_map" argument="--gene-transcript-map" type="data" format="tabular" optional="True" label="Tabular file mapping genes to transripts" /> <param name="gene_tag" argument="--gene-tag" type="text" optional="True" label="Deduplicate by this gene tag" help="As --per-gene except here the gene information is encoded in the bam read tag specified so you do not need to supply the mapping file." /> </inputs> <outputs> <data format="bam" name="output" /> </outputs> <tests> <test> <param name="input" value="group_in1.sam" ftype="sam" /> <param name="extract_umi_method" value="read_id" /> <param name="method" value="unique" /> <output name="output" file="dedup_out1.bam" ftype="bam" sort="True"/> </test> <test> <param name="input" value="group_in2.bam" ftype="bam" /> <param name="extract_umi_method" value="read_id" /> <param name="paired" value="True" /> <param name="method" value="unique" /> <output name="output" file="dedup_out2.bam" ftype="bam" sort="True" /> </test> <test> <param name="input" value="group_in3.bam" ftype="bam" /> <param name="extract_umi_method" value="read_id" /> <param name="method" value="unique" /> <output name="output" file="dedup_out3.bam" ftype="bam" sort="True" /> </test> <test> <param name="input" value="group_in4.bam" ftype="bam" /> <param name="extract_umi_method" value="tag" /> <param name="umi_tag" value="BX" /> <param name="method" value="unique" /> <output name="output" file="dedup_out4.bam" ftype="bam" sort="True" /> </test> <test> <param name="input" value="group_in5.bam" ftype="bam" /> <param name="extract_umi_method" value="read_id" /> <param name="umi_tag" value="BX" /> <param name="method" value="cluster" /> <output name="output" file="dedup_out5.bam" ftype="bam" sort="True" /> </test> <test> <param name="input" value="group_in6.bam" ftype="bam" /> <param name="extract_umi_method" value="read_id" /> <param name="umi_tag" value="BX" /> <param name="method" value="directional" /> <output name="output" file="dedup_out6.bam" ftype="bam" sort="True" /> </test> </tests> <help><![CDATA[ umi_tools dedup - Deduplicate reads based on their UMI ====================================================== Purpose ------- The purpose of this command is to deduplicate BAM files based on the first mapping co-ordinate and the UMI attached to the read. It is assumed that the FASTQ files were processed with extract_umi.py before mapping and thus the UMI is the last word of the read name. e.g: @HISEQ:87:00000000_AATT where AATT is the UMI sequeuence. If you have used an alternative method which does not separate the read id and UMI with a "_", such as bcl2fastq which uses ":", you can specify the separator with the option "--umi-separator=<sep>", replacing <sep> with e.g ":". Alternatively, if your UMIs are encoded in a tag, you can specify this by setting the option --extract-umi-method=tag and set the tag name with the --umi-tag option. For example, if your UMIs are encoded in the 'UM' tag, provide the following options: "--extract-umi-method=tag --umi-tag=UM" The start postion of a read is considered to be the start of its alignment minus any soft clipped bases. A read aligned at position 500 with cigar 2S98M will be assumed to start at postion 498. Methods ------- dedup can be run with multiple methods to identify groups of reads with the same (or similar) UMI(s). All methods start by identifying the reads with the same mapping position. The simpliest method, "unique", groups reads with the exact same UMI. The network-based methods, "cluster", "adjacency" and "directional", build networks where nodes are UMIs and edges connect UMIs with an edit distance <= threshold (usually 1). The groups of reads are then defined from the network in a method-specific manner. "unique" Reads group share the exact same UMI "percentile" Reads group share the exact same UMI. UMIs with counts < 1% of the median counts for UMIs at the same position are ignored. "cluster" Identify clusters of connected UMIs (based on hamming distance threshold). Each network is a read group "adjacency" Cluster UMIs as above. For each cluster, select the node(UMI) with the highest counts. Visit all nodes one edge away. If all nodes have been visted, stop. Otherise, repeat with remaining nodes until all nodes have been visted. Each step defines a read group. "directional" (default) Identify clusters of connected UMIs (based on hamming distance threshold) and umi A counts >= (2* umi B counts) - 1. Each network is a read group. Options ------- --extract-umi-method (choice) How are the UMIs encoded in the read? Options are: - "read_id" (default) UMIs contained at the end of the read separated as specified with --umi-separator option - "tag" UMIs contained in a tag, see --umi-tag option --umi-separator (string) Separator between read id and UMI. See --extract-umi-method above --umi-tag (string) Tag which contains UMI. See --extract-umi-method above --edit-distance-threshold (int) For the adjacency and cluster methods the threshold for the edit distance to connect two UMIs in the network can be increased. The default value of 1 works best unless the UMI is very long (>14bp) --paired BAM is paired end - output both read pairs. This will also force the use of the template length to determine reads with the same mapping coordinates. --spliced-is-unique Causes two reads that start in the same position on the same strand and having the same UMI to be considered unique if one is spliced and the other is not. (Uses the 'N' cigar operation to test for splicing) --soft-clip-threshold (int) Mappers that soft clip, will sometimes do so rather than mapping a spliced read if there is only a small overhang over the exon junction. By setting this option, you can treat reads with at least this many bases soft-clipped at the 3' end as spliced. --multimapping-detection-method (string, choice) If the sam/bam contains tags to identify multimapping reads, you can specify for use when selecting the best read at a given loci. Supported tags are "NH", "X0" and "XT". If not specified, the read with the highest mapping quality will be selected --read-length Use the read length as as a criteria when deduping, for e.g sRNA-Seq --whole-contig Consider all alignments to a single contig together. This is useful if you have aligned to a transcriptome multi-fasta --subset (float, [0-1]) Only consider a fraction of the reads, chosen at random. This is useful for doing saturation analyses. --chrom Only consider a single chromosome. This is useful for debugging purposes --per-contig (string) Deduplicate per contig (field 3 in BAM; RNAME). All reads with the same contig will be considered to have the same alignment position. This is useful if your library prep generates PCR duplicates with non identical alignment positions such as CEL-Seq. In this case, you would align to a reference transcriptome with one transcript per gene --per-gene (string) Deduplicate per gene. As above except with this option you can align to a reference transcriptome with more than one transcript per gene. You need to also provide --gene-transcript-map option. This will also add a metacontig ('MC') tag to the reads if used in conjunction with --output-bam --gene-transcript-map (string) File mapping genes to transripts (tab separated), e.g: gene1 transcript1 gene1 transcript2 gene2 transcript3 --gene-tag (string) Deduplicate per gene. As per --per-gene except here the gene information is encoded in the bam read tag specified so you do not need to supply --gene-transcript-map --output-bam (string, filename) Output a tagged bam file to stdout or -S <filename> -i, --in-sam/-o, --out-sam By default, inputs are assumed to be in BAM format and output are output in BAM format. Use these options to specify the use of SAM format for inputs or outputs. -I (string, filename) input file name The input file must be sorted and indexed. -S (string, filename) output file name -L (string, filename) log file name Usage ----- umi_tools dedup -I infile.bam -S grouped.bam -- ]]></help> <expand macro="citations" /> </tool>