Mercurial > repos > iuc > virhunter
comparison models/model_5.py @ 0:457fd8fd681a draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/VirHunter commit 628688c1302dbf972e48806d2a5bafe27847bdcc
| author | iuc |
|---|---|
| date | Wed, 09 Nov 2022 12:19:26 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:457fd8fd681a |
|---|---|
| 1 from tensorflow.keras import layers, models | |
| 2 | |
| 3 | |
| 4 def launch(input_layer, hidden_layers): | |
| 5 output = input_layer | |
| 6 for hidden_layer in hidden_layers: | |
| 7 output = hidden_layer(output) | |
| 8 return output | |
| 9 | |
| 10 | |
| 11 def model(length, kernel_size=5, filters=256, dense_ns=256): | |
| 12 forward_input = layers.Input(shape=(length, 4)) | |
| 13 reverse_input = layers.Input(shape=(length, 4)) | |
| 14 hidden_layers = [ | |
| 15 layers.Conv1D(filters=filters, kernel_size=kernel_size), | |
| 16 layers.LeakyReLU(alpha=0.1), | |
| 17 layers.GlobalMaxPooling1D(), | |
| 18 layers.Dropout(0.1), | |
| 19 ] | |
| 20 forward_output = launch(forward_input, hidden_layers) | |
| 21 reverse_output = launch(reverse_input, hidden_layers) | |
| 22 output = layers.Concatenate()([forward_output, reverse_output]) | |
| 23 output = layers.Dense(dense_ns, activation='relu')(output) | |
| 24 output = layers.Dropout(0.1)(output) | |
| 25 # output = layers.Dense(64, activation='relu')(output) | |
| 26 # output = layers.Dropout(0.1)(output) | |
| 27 output = layers.Dense(3, activation='softmax')(output) | |
| 28 model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output) | |
| 29 model_.compile(optimizer="adam", loss='categorical_crossentropy', metrics='accuracy') | |
| 30 return model_ | |
| 31 | |
| 32 | |
| 33 # def model(length, kernel_size=5, filters=256, dense_ns=512): | |
| 34 # forward_input = layers.Input(shape=(length, 4)) | |
| 35 # reverse_input = layers.Input(shape=(length, 4)) | |
| 36 # hidden_layers = [ | |
| 37 # layers.Conv1D(filters=filters, kernel_size=kernel_size), | |
| 38 # layers.MaxPool1D(pool_size=50, strides=25), | |
| 39 # layers.LSTM(32), | |
| 40 # ] | |
| 41 # forward_output = launch(forward_input, hidden_layers) | |
| 42 # reverse_output = launch(reverse_input, hidden_layers) | |
| 43 # output = layers.Concatenate()([forward_output, reverse_output]) | |
| 44 # # output = layers.Dense(64, activation='relu')(output) | |
| 45 # output = layers.Dropout(0.1)(output) | |
| 46 # output = layers.Dense(3, activation='softmax')(output) | |
| 47 # model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output) | |
| 48 # model_.compile(optimizer="adam", loss='categorical_crossentropy', metrics='accuracy') | |
| 49 # return model_ |
