Mercurial > repos > iuc > virhunter
comparison models/model_5.py @ 0:457fd8fd681a draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/VirHunter commit 628688c1302dbf972e48806d2a5bafe27847bdcc
author | iuc |
---|---|
date | Wed, 09 Nov 2022 12:19:26 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:457fd8fd681a |
---|---|
1 from tensorflow.keras import layers, models | |
2 | |
3 | |
4 def launch(input_layer, hidden_layers): | |
5 output = input_layer | |
6 for hidden_layer in hidden_layers: | |
7 output = hidden_layer(output) | |
8 return output | |
9 | |
10 | |
11 def model(length, kernel_size=5, filters=256, dense_ns=256): | |
12 forward_input = layers.Input(shape=(length, 4)) | |
13 reverse_input = layers.Input(shape=(length, 4)) | |
14 hidden_layers = [ | |
15 layers.Conv1D(filters=filters, kernel_size=kernel_size), | |
16 layers.LeakyReLU(alpha=0.1), | |
17 layers.GlobalMaxPooling1D(), | |
18 layers.Dropout(0.1), | |
19 ] | |
20 forward_output = launch(forward_input, hidden_layers) | |
21 reverse_output = launch(reverse_input, hidden_layers) | |
22 output = layers.Concatenate()([forward_output, reverse_output]) | |
23 output = layers.Dense(dense_ns, activation='relu')(output) | |
24 output = layers.Dropout(0.1)(output) | |
25 # output = layers.Dense(64, activation='relu')(output) | |
26 # output = layers.Dropout(0.1)(output) | |
27 output = layers.Dense(3, activation='softmax')(output) | |
28 model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output) | |
29 model_.compile(optimizer="adam", loss='categorical_crossentropy', metrics='accuracy') | |
30 return model_ | |
31 | |
32 | |
33 # def model(length, kernel_size=5, filters=256, dense_ns=512): | |
34 # forward_input = layers.Input(shape=(length, 4)) | |
35 # reverse_input = layers.Input(shape=(length, 4)) | |
36 # hidden_layers = [ | |
37 # layers.Conv1D(filters=filters, kernel_size=kernel_size), | |
38 # layers.MaxPool1D(pool_size=50, strides=25), | |
39 # layers.LSTM(32), | |
40 # ] | |
41 # forward_output = launch(forward_input, hidden_layers) | |
42 # reverse_output = launch(reverse_input, hidden_layers) | |
43 # output = layers.Concatenate()([forward_output, reverse_output]) | |
44 # # output = layers.Dense(64, activation='relu')(output) | |
45 # output = layers.Dropout(0.1)(output) | |
46 # output = layers.Dense(3, activation='softmax')(output) | |
47 # model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output) | |
48 # model_.compile(optimizer="adam", loss='categorical_crossentropy', metrics='accuracy') | |
49 # return model_ |