Mercurial > repos > iuc > vsnp_add_zero_coverage
comparison vsnp_statistics.py @ 7:6dc6dd4666e3 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 2a94c64d6c7236550bf483d2ffc4e86248c63aab"
| author | iuc |
|---|---|
| date | Tue, 16 Nov 2021 20:10:48 +0000 |
| parents | 5a5cf6f024bf |
| children | 40b97055bb99 |
comparison
equal
deleted
inserted
replaced
| 6:9ddeef840a07 | 7:6dc6dd4666e3 |
|---|---|
| 1 #!/usr/bin/env python | 1 #!/usr/bin/env python |
| 2 | 2 |
| 3 import argparse | 3 import argparse |
| 4 import csv | |
| 5 import gzip | 4 import gzip |
| 6 import os | 5 import os |
| 7 from functools import partial | 6 from functools import partial |
| 8 | 7 |
| 9 import numpy | 8 import numpy |
| 10 import pandas | 9 import pandas |
| 11 from Bio import SeqIO | 10 from Bio import SeqIO |
| 11 | |
| 12 | |
| 13 class Statistics: | |
| 14 | |
| 15 def __init__(self, reference, fastq_file, file_size, total_reads, mean_read_length, mean_read_quality, reads_passing_q30): | |
| 16 self.reference = reference | |
| 17 self.fastq_file = fastq_file | |
| 18 self.file_size = file_size | |
| 19 self.total_reads = total_reads | |
| 20 self.mean_read_length = mean_read_length | |
| 21 self.mean_read_quality = mean_read_quality | |
| 22 self.reads_passing_q30 = reads_passing_q30 | |
| 12 | 23 |
| 13 | 24 |
| 14 def nice_size(size): | 25 def nice_size(size): |
| 15 # Returns a readably formatted string with the size | 26 # Returns a readably formatted string with the size |
| 16 words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] | 27 words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] |
| 30 return "%s%d bytes" % (prefix, size) | 41 return "%s%d bytes" % (prefix, size) |
| 31 return "%s%.1f %s" % (prefix, size, word) | 42 return "%s%.1f %s" % (prefix, size, word) |
| 32 return '??? bytes' | 43 return '??? bytes' |
| 33 | 44 |
| 34 | 45 |
| 35 def output_statistics(fastq_files, idxstats_files, metrics_files, output_file, gzipped, dbkey): | 46 def get_statistics(dbkey, fastq_file, gzipped): |
| 36 # Produce an Excel spreadsheet that | 47 sampling_size = 10000 |
| 37 # contains a row for each sample. | 48 # Read fastq_file into a data fram to |
| 38 columns = ['Reference', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', | 49 # get the phred quality scores. |
| 39 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total', | 50 _open = partial(gzip.open, mode='rt') if gzipped else open |
| 40 'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count'] | 51 with _open(fastq_file) as fh: |
| 41 data_frames = [] | 52 identifiers = [] |
| 42 for i, fastq_file in enumerate(fastq_files): | 53 seqs = [] |
| 43 idxstats_file = idxstats_files[i] | 54 letter_annotations = [] |
| 44 metrics_file = metrics_files[i] | 55 for seq_record in SeqIO.parse(fh, "fastq"): |
| 45 file_name_base = os.path.basename(fastq_file) | 56 identifiers.append(seq_record.id) |
| 46 # Read fastq_file into a data frame. | 57 seqs.append(seq_record.seq) |
| 47 _open = partial(gzip.open, mode='rt') if gzipped else open | 58 letter_annotations.append(seq_record.letter_annotations["phred_quality"]) |
| 48 with _open(fastq_file) as fh: | 59 # Convert lists to Pandas series. |
| 49 identifiers = [] | 60 s1 = pandas.Series(identifiers, name='id') |
| 50 seqs = [] | 61 s2 = pandas.Series(seqs, name='seq') |
| 51 letter_annotations = [] | 62 # Gather Series into a data frame. |
| 52 for seq_record in SeqIO.parse(fh, "fastq"): | 63 fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id']) |
| 53 identifiers.append(seq_record.id) | 64 # Starting at row 3, keep every 4 row |
| 54 seqs.append(seq_record.seq) | 65 # random sample specified number of rows. |
| 55 letter_annotations.append(seq_record.letter_annotations["phred_quality"]) | 66 file_size = nice_size(os.path.getsize(fastq_file)) |
| 56 # Convert lists to Pandas series. | 67 total_reads = len(seqs) |
| 57 s1 = pandas.Series(identifiers, name='id') | 68 # Mean Read Length |
| 58 s2 = pandas.Series(seqs, name='seq') | 69 if sampling_size > total_reads: |
| 59 # Gather Series into a data frame. | 70 sampling_size = total_reads |
| 60 fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id']) | 71 try: |
| 61 total_reads = int(len(fastq_df.index) / 4) | |
| 62 current_sample_df = pandas.DataFrame(index=[file_name_base], columns=columns) | |
| 63 # Reference | |
| 64 current_sample_df.at[file_name_base, 'Reference'] = dbkey | |
| 65 # File Size | |
| 66 current_sample_df.at[file_name_base, 'File Size'] = nice_size(os.path.getsize(fastq_file)) | |
| 67 # Mean Read Length | |
| 68 sampling_size = 10000 | |
| 69 if sampling_size > total_reads: | |
| 70 sampling_size = total_reads | |
| 71 fastq_df = fastq_df.iloc[3::4].sample(sampling_size) | 72 fastq_df = fastq_df.iloc[3::4].sample(sampling_size) |
| 72 dict_mean = {} | 73 except ValueError: |
| 73 list_length = [] | 74 fastq_df = fastq_df.iloc[3::4].sample(sampling_size, replace=True) |
| 74 i = 0 | 75 dict_mean = {} |
| 75 for id, seq, in fastq_df.iterrows(): | 76 list_length = [] |
| 76 dict_mean[id] = numpy.mean(letter_annotations[i]) | 77 i = 0 |
| 77 list_length.append(len(seq.array[0])) | 78 for id, seq, in fastq_df.iterrows(): |
| 78 i += 1 | 79 dict_mean[id] = numpy.mean(letter_annotations[i]) |
| 79 current_sample_df.at[file_name_base, 'Mean Read Length'] = '%.1f' % numpy.mean(list_length) | 80 list_length.append(len(seq.array[0])) |
| 80 # Mean Read Quality | 81 i += 1 |
| 81 df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave']) | 82 mean_read_length = '%.1f' % numpy.mean(list_length) |
| 82 current_sample_df.at[file_name_base, 'Mean Read Quality'] = '%.1f' % df_mean['ave'].mean() | 83 # Mean Read Quality |
| 83 # Reads Passing Q30 | 84 df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave']) |
| 84 reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30]) | 85 mean_read_quality = '%.1f' % df_mean['ave'].mean() |
| 85 reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size) | 86 # Reads Passing Q30 |
| 86 current_sample_df.at[file_name_base, 'Reads Passing Q30'] = reads_passing_q30 | 87 reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30]) |
| 88 reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size) | |
| 89 stats = Statistics(dbkey, os.path.basename(fastq_file), file_size, total_reads, mean_read_length, | |
| 90 mean_read_quality, reads_passing_q30) | |
| 91 return stats | |
| 92 | |
| 93 | |
| 94 def accrue_statistics(dbkey, read1, read2, gzipped): | |
| 95 read1_stats = get_statistics(dbkey, read1, gzipped) | |
| 96 if read2 is None: | |
| 97 read2_stats = None | |
| 98 else: | |
| 99 read2_stats = get_statistics(dbkey, read2, gzipped) | |
| 100 return read1_stats, read2_stats | |
| 101 | |
| 102 | |
| 103 def output_statistics(read1_stats, read2_stats, idxstats_file, metrics_file, output_file): | |
| 104 paired_reads = read2_stats is not None | |
| 105 if paired_reads: | |
| 106 columns = ['Read1 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality', | |
| 107 'Reads Passing Q30', 'Read2 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality', | |
| 108 'Reads Passing Q30', 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', | |
| 109 'Unmapped Reads Percentage of Total', 'Reference with Coverage', 'Average Depth of Coverage', | |
| 110 'Good SNP Count', 'Reference'] | |
| 111 else: | |
| 112 columns = ['FASTQ', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', | |
| 113 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total', | |
| 114 'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count', 'Reference'] | |
| 115 with open(output_file, "w") as outfh: | |
| 116 # Make sure the header starts with a # so | |
| 117 # MultiQC can properly handle the output. | |
| 118 outfh.write("%s\n" % "\t".join(columns)) | |
| 119 line_items = [] | |
| 120 # Get the current stats and associated files. | |
| 121 # Get and output the statistics. | |
| 122 line_items.append(read1_stats.fastq_file) | |
| 123 line_items.append(read1_stats.file_size) | |
| 124 if paired_reads: | |
| 125 line_items.append(read1_stats.total_reads) | |
| 126 line_items.append(read1_stats.mean_read_length) | |
| 127 line_items.append(read1_stats.mean_read_quality) | |
| 128 line_items.append(read1_stats.reads_passing_q30) | |
| 129 if paired_reads: | |
| 130 line_items.append(read2_stats.fastq_file) | |
| 131 line_items.append(read2_stats.file_size) | |
| 132 line_items.append(read2_stats.total_reads) | |
| 133 line_items.append(read2_stats.mean_read_length) | |
| 134 line_items.append(read2_stats.mean_read_quality) | |
| 135 line_items.append(read2_stats.reads_passing_q30) | |
| 87 # Total Reads | 136 # Total Reads |
| 88 current_sample_df.at[file_name_base, 'Total Reads'] = total_reads | 137 if paired_reads: |
| 138 total_reads = read1_stats.total_reads + read2_stats.total_reads | |
| 139 else: | |
| 140 total_reads = read1_stats.total_reads | |
| 141 line_items.append(total_reads) | |
| 89 # All Mapped Reads | 142 # All Mapped Reads |
| 90 all_mapped_reads, unmapped_reads = process_idxstats_file(idxstats_file) | 143 all_mapped_reads, unmapped_reads = process_idxstats_file(idxstats_file) |
| 91 current_sample_df.at[file_name_base, 'All Mapped Reads'] = all_mapped_reads | 144 line_items.append(all_mapped_reads) |
| 92 # Unmapped Reads | 145 line_items.append(unmapped_reads) |
| 93 current_sample_df.at[file_name_base, 'Unmapped Reads'] = unmapped_reads | |
| 94 # Unmapped Reads Percentage of Total | 146 # Unmapped Reads Percentage of Total |
| 95 if unmapped_reads > 0: | 147 if unmapped_reads > 0: |
| 96 unmapped_reads_percentage = '{:10.2f}'.format(unmapped_reads / total_reads) | 148 unmapped_reads_percentage = '{:10.2f}'.format(unmapped_reads / total_reads) |
| 97 else: | 149 else: |
| 98 unmapped_reads_percentage = 0 | 150 unmapped_reads_percentage = 0 |
| 99 current_sample_df.at[file_name_base, 'Unmapped Reads Percentage of Total'] = unmapped_reads_percentage | 151 line_items.append(unmapped_reads_percentage) |
| 100 # Reference with Coverage | 152 # Reference with Coverage |
| 101 ref_with_coverage, avg_depth_of_coverage, good_snp_count = process_metrics_file(metrics_file) | 153 ref_with_coverage, avg_depth_of_coverage, good_snp_count = process_metrics_file(metrics_file) |
| 102 current_sample_df.at[file_name_base, 'Reference with Coverage'] = ref_with_coverage | 154 line_items.append(ref_with_coverage) |
| 103 # Average Depth of Coverage | 155 line_items.append(avg_depth_of_coverage) |
| 104 current_sample_df.at[file_name_base, 'Average Depth of Coverage'] = avg_depth_of_coverage | 156 line_items.append(good_snp_count) |
| 105 # Good SNP Count | 157 line_items.append(read1_stats.reference) |
| 106 current_sample_df.at[file_name_base, 'Good SNP Count'] = good_snp_count | 158 outfh.write('%s\n' % '\t'.join(str(x) for x in line_items)) |
| 107 data_frames.append(current_sample_df) | |
| 108 output_df = pandas.concat(data_frames) | |
| 109 output_df.to_csv(output_file, sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\') | |
| 110 | 159 |
| 111 | 160 |
| 112 def process_idxstats_file(idxstats_file): | 161 def process_idxstats_file(idxstats_file): |
| 113 all_mapped_reads = 0 | 162 all_mapped_reads = 0 |
| 114 unmapped_reads = 0 | 163 unmapped_reads = 0 |
| 148 | 197 |
| 149 parser = argparse.ArgumentParser() | 198 parser = argparse.ArgumentParser() |
| 150 | 199 |
| 151 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey') | 200 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey') |
| 152 parser.add_argument('--gzipped', action='store_true', dest='gzipped', required=False, default=False, help='Input files are gzipped') | 201 parser.add_argument('--gzipped', action='store_true', dest='gzipped', required=False, default=False, help='Input files are gzipped') |
| 153 parser.add_argument('--input_idxstats_dir', action='store', dest='input_idxstats_dir', required=False, default=None, help='Samtools idxstats input directory') | |
| 154 parser.add_argument('--input_metrics_dir', action='store', dest='input_metrics_dir', required=False, default=None, help='vSNP add zero coverage metrics input directory') | |
| 155 parser.add_argument('--input_reads_dir', action='store', dest='input_reads_dir', required=False, default=None, help='Samples input directory') | |
| 156 parser.add_argument('--list_paired', action='store_true', dest='list_paired', required=False, default=False, help='Input samples is a list of paired reads') | |
| 157 parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file') | 202 parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file') |
| 158 parser.add_argument('--read1', action='store', dest='read1', help='Required: single read') | 203 parser.add_argument('--read1', action='store', dest='read1', help='Required: single read') |
| 159 parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') | 204 parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') |
| 160 parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', help='Output of samtools_idxstats') | 205 parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', help='Output of samtools_idxstats') |
| 161 parser.add_argument('--vsnp_azc', action='store', dest='vsnp_azc', help='Output of vsnp_add_zero_coverage') | 206 parser.add_argument('--vsnp_azc_metrics', action='store', dest='vsnp_azc_metrics', help='Output of vsnp_add_zero_coverage') |
| 162 | 207 |
| 163 args = parser.parse_args() | 208 args = parser.parse_args() |
| 164 | 209 |
| 165 fastq_files = [] | 210 stats_list = [] |
| 166 idxstats_files = [] | 211 idxstats_files = [] |
| 167 metrics_files = [] | 212 metrics_files = [] |
| 168 # Accumulate inputs. | 213 # Accumulate inputs. |
| 169 if args.read1 is not None: | 214 read1_stats, read2_stats = accrue_statistics(args.dbkey, args.read1, args.read2, args.gzipped) |
| 170 # The inputs are not dataset collections, so | 215 output_statistics(read1_stats, read2_stats, args.samtools_idxstats, args.vsnp_azc_metrics, args.output) |
| 171 # read1, read2 (possibly) and vsnp_azc will also | |
| 172 # not be None. | |
| 173 fastq_files.append(args.read1) | |
| 174 idxstats_files.append(args.samtools_idxstats) | |
| 175 metrics_files.append(args.vsnp_azc) | |
| 176 if args.read2 is not None: | |
| 177 fastq_files.append(args.read2) | |
| 178 idxstats_files.append(args.samtools_idxstats) | |
| 179 metrics_files.append(args.vsnp_azc) | |
| 180 else: | |
| 181 for file_name in sorted(os.listdir(args.input_reads_dir)): | |
| 182 fastq_files.append(os.path.join(args.input_reads_dir, file_name)) | |
| 183 for file_name in sorted(os.listdir(args.input_idxstats_dir)): | |
| 184 idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name)) | |
| 185 if args.list_paired: | |
| 186 # Add the idxstats file for reverse. | |
| 187 idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name)) | |
| 188 for file_name in sorted(os.listdir(args.input_metrics_dir)): | |
| 189 metrics_files.append(os.path.join(args.input_metrics_dir, file_name)) | |
| 190 if args.list_paired: | |
| 191 # Add the metrics file for reverse. | |
| 192 metrics_files.append(os.path.join(args.input_metrics_dir, file_name)) | |
| 193 output_statistics(fastq_files, idxstats_files, metrics_files, args.output, args.gzipped, args.dbkey) |
