Mercurial > repos > iuc > vsnp_build_tables
view vsnp_build_tables.py @ 0:5e258fba246c draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit c67950184792952302f0e89354c311d4e5ed774c"
author | iuc |
---|---|
date | Fri, 08 May 2020 12:59:27 -0400 |
parents | |
children | a52b819aa990 |
line wrap: on
line source
#!/usr/bin/env python import argparse import multiprocessing import os import pandas import queue import pandas.io.formats.excel import re from Bio import SeqIO INPUT_JSON_AVG_MQ_DIR = 'input_json_avg_mq_dir' INPUT_JSON_DIR = 'input_json_dir' INPUT_NEWICK_DIR = 'input_newick_dir' # Maximum columns allowed in a LibreOffice # spreadsheet is 1024. Excel allows for # 16,384 columns, but we'll set the lower # number as the maximum. Some browsers # (e.g., Firefox on Linux) are configured # to use LibreOffice for Excel spreadsheets. MAXCOLS = 1024 OUTPUT_EXCEL_DIR = 'output_excel_dir' def annotate_table(table_df, group, annotation_dict): for gbk_chrome, pro in list(annotation_dict.items()): ref_pos = list(table_df) ref_series = pandas.Series(ref_pos) ref_df = pandas.DataFrame(ref_series.str.split(':', expand=True).values, columns=['reference', 'position']) all_ref = ref_df[ref_df['reference'] == gbk_chrome] positions = all_ref.position.to_frame() # Create an annotation file. annotation_file = "%s_annotations.csv" % group with open(annotation_file, "a") as fh: for index, row in positions.iterrows(): pos = row.position try: aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']] try: chrom, name, locus, tag = aaa.values[0] print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) except ValueError: # If only one annotation for the entire # chromosome (e.g., flu) then having [0] fails chrom, name, locus, tag = aaa.values print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) except KeyError: print("{}:{}\tNo annotated product".format(gbk_chrome, pos), file=fh) # Read the annotation file into a data frame. annotations_df = pandas.read_csv(annotation_file, sep='\t', header=None, names=['index', 'annotations'], index_col='index') # Remove the annotation_file from disk since both # cascade and sort tables are built using the file, # and it is opened for writing in append mode. os.remove(annotation_file) # Process the data. table_df_transposed = table_df.T table_df_transposed.index = table_df_transposed.index.rename('index') table_df_transposed = table_df_transposed.merge(annotations_df, left_index=True, right_index=True) table_df = table_df_transposed.T return table_df def excel_formatter(json_file_name, excel_file_name, group, annotation_dict): pandas.io.formats.excel.header_style = None table_df = pandas.read_json(json_file_name, orient='split') if annotation_dict is not None: table_df = annotate_table(table_df, group, annotation_dict) else: table_df = table_df.append(pandas.Series(name='no annotations')) writer = pandas.ExcelWriter(excel_file_name, engine='xlsxwriter') table_df.to_excel(writer, sheet_name='Sheet1') writer_book = writer.book ws = writer.sheets['Sheet1'] format_a = writer_book.add_format({'bg_color': '#58FA82'}) format_g = writer_book.add_format({'bg_color': '#F7FE2E'}) format_c = writer_book.add_format({'bg_color': '#0000FF'}) format_t = writer_book.add_format({'bg_color': '#FF0000'}) format_normal = writer_book.add_format({'bg_color': '#FDFEFE'}) formatlowqual = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) format_ambigous = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) format_n = writer_book.add_format({'bg_color': '#E2CFDD'}) rows, cols = table_df.shape ws.set_column(0, 0, 30) ws.set_column(1, cols, 2.1) ws.freeze_panes(2, 1) format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) # Set last row. ws.set_row(rows + 1, cols + 1, format_annotation) # Make sure that row/column locations don't overlap. ws.conditional_format(rows - 2, 1, rows - 1, cols, {'type': 'cell', 'criteria': '<', 'value': 55, 'format': formatlowqual}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'cell', 'criteria': '==', 'value': 'B$2', 'format': format_normal}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'A', 'format': format_a}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'G', 'format': format_g}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'C', 'format': format_c}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'T', 'format': format_t}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'S', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'Y', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'R', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'W', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'K', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'M', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'N', 'format': format_n}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': '-', 'format': format_n}) format_rotation = writer_book.add_format({}) format_rotation.set_rotation(90) for column_num, column_name in enumerate(list(table_df.columns)): ws.write(0, column_num + 1, column_name, format_rotation) format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) # Set last row. ws.set_row(rows, 400, format_annotation) writer.save() def get_annotation_dict(gbk_file): gbk_dict = SeqIO.to_dict(SeqIO.parse(gbk_file, "genbank")) annotation_dict = {} tmp_file = "features.csv" # Create a file of chromosomes and features. for chromosome in list(gbk_dict.keys()): with open(tmp_file, 'w+') as fh: for feature in gbk_dict[chromosome].features: if "CDS" in feature.type or "rRNA" in feature.type: try: product = feature.qualifiers['product'][0] except KeyError: product = None try: locus = feature.qualifiers['locus_tag'][0] except KeyError: locus = None try: gene = feature.qualifiers['gene'][0] except KeyError: gene = None fh.write("%s\t%d\t%d\t%s\t%s\t%s\n" % (chromosome, int(feature.location.start), int(feature.location.end), locus, product, gene)) # Read the chromosomes and features file into a data frame. df = pandas.read_csv(tmp_file, sep='\t', names=["chrom", "start", "stop", "locus", "product", "gene"]) # Process the data. df = df.sort_values(['start', 'gene'], ascending=[True, False]) df = df.drop_duplicates('start') pro = df.reset_index(drop=True) pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both') annotation_dict[chromosome] = pro return annotation_dict def get_base_file_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] elif base_file_name.find("_") > 0: # The dot extension was likely changed to # the " character. items = base_file_name.split("_") return "_".join(items[0:-1]) else: return base_file_name def output_cascade_table(cascade_order, mqdf, group, annotation_dict): cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner') output_table(cascade_order_mq, "cascade", group, annotation_dict) def output_excel(df, type_str, group, annotation_dict, count=None): # Output the temporary json file that # is used by the excel_formatter. if count is None: if group is None: json_file_name = "%s_order_mq.json" % type_str excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str) else: json_file_name = "%s_%s_order_mq.json" % (group, type_str) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str)) else: if group is None: json_file_name = "%s_order_mq_%d.json" % (type_str, count) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count)) else: json_file_name = "%s_%s_order_mq_%d.json" % (group, type_str, count) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count)) df.to_json(json_file_name, orient='split') # Output the Excel file. excel_formatter(json_file_name, excel_file_name, group, annotation_dict) def output_sort_table(cascade_order, mqdf, group, annotation_dict): sort_df = cascade_order.T sort_df['abs_value'] = sort_df.index sort_df[['chrom', 'pos']] = sort_df['abs_value'].str.split(':', expand=True) sort_df = sort_df.drop(['abs_value', 'chrom'], axis=1) sort_df.pos = sort_df.pos.astype(int) sort_df = sort_df.sort_values(by=['pos']) sort_df = sort_df.drop(['pos'], axis=1) sort_df = sort_df.T sort_order_mq = pandas.concat([sort_df, mqdf], join='inner') output_table(sort_order_mq, "sort", group, annotation_dict) def output_table(df, type_str, group, annotation_dict): if isinstance(group, str) and group.startswith("dataset"): # Inputs are single files, not collections, # so input file names are not useful for naming # output files. group_str = None else: group_str = group count = 0 chunk_start = 0 chunk_end = 0 column_count = df.shape[1] if column_count >= MAXCOLS: # Here the number of columns is greater than # the maximum allowed by Excel, so multiple # outputs will be produced. while column_count >= MAXCOLS: count += 1 chunk_end += MAXCOLS df_of_type = df.iloc[:, chunk_start:chunk_end] output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) chunk_start += MAXCOLS column_count -= MAXCOLS count += 1 df_of_type = df.iloc[:, chunk_start:] output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) else: output_excel(df, type_str, group_str, annotation_dict) def preprocess_tables(task_queue, annotation_dict, timeout): while True: try: tup = task_queue.get(block=True, timeout=timeout) except queue.Empty: break newick_file, json_file, json_avg_mq_file = tup avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') # Map quality to dataframe. mqdf = avg_mq_series.to_frame(name='MQ') mqdf = mqdf.T # Get the group. group = get_base_file_name(newick_file) snps_df = pandas.read_json(json_file, orient='split') with open(newick_file, 'r') as fh: for line in fh: line = re.sub('[:,]', '\n', line) line = re.sub('[)(]', '', line) line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) line = re.sub('root\n', '', line) sample_order = line.split('\n') sample_order = list([_f for _f in sample_order if _f]) sample_order.insert(0, 'root') tree_order = snps_df.loc[sample_order] # Count number of SNPs in each column. snp_per_column = [] for column_header in tree_order: count = 0 column = tree_order[column_header] for element in column: if element != column[0]: count = count + 1 snp_per_column.append(count) row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") # Count number of SNPS from the # top of each column in the table. snp_from_top = [] for column_header in tree_order: count = 0 column = tree_order[column_header] # for each element in the column # skip the first element for element in column[1:]: if element == column[0]: count = count + 1 else: break snp_from_top.append(count) row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") tree_order = tree_order.append([row1]) tree_order = tree_order.append([row2]) # In pandas=0.18.1 even this does not work: # abc = row1.to_frame() # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) # tree_order.append(abc) # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" tree_order = tree_order.T tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) tree_order = tree_order.T # Remove snp_per_column and snp_from_top rows. cascade_order = tree_order[:-2] # Output the cascade table. output_cascade_table(cascade_order, mqdf, group, annotation_dict) # Output the sorted table. output_sort_table(cascade_order, mqdf, group, annotation_dict) task_queue.task_done() def set_num_cpus(num_files, processes): num_cpus = int(multiprocessing.cpu_count()) if num_files < num_cpus and num_files < processes: return num_files if num_cpus < processes: half_cpus = int(num_cpus / 2) if num_files < half_cpus: return num_files return half_cpus return processes if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', required=False, default=None, help='Average MQ json file') parser.add_argument('--input_newick', action='store', dest='input_newick', required=False, default=None, help='Newick file') parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', required=False, default=None, help='SNPs json file') parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting') args = parser.parse_args() if args.gbk_file is not None: # Create the annotation_dict for annotating # the Excel tables. annotation_dict = get_annotation_dict(args.gbk_file) else: annotation_dict = None # The assumption here is that the list of files # in both INPUT_NEWICK_DIR and INPUT_JSON_DIR are # named such that they are properly matched if # the directories contain more than 1 file (i.e., # hopefully the newick file names and json file names # will be something like Mbovis-01D6_* so they can be # sorted and properly associated with each other). if args.input_newick is not None: newick_files = [args.input_newick] else: newick_files = [] for file_name in sorted(os.listdir(INPUT_NEWICK_DIR)): file_path = os.path.abspath(os.path.join(INPUT_NEWICK_DIR, file_name)) newick_files.append(file_path) if args.input_snps_json is not None: json_files = [args.input_snps_json] else: json_files = [] for file_name in sorted(os.listdir(INPUT_JSON_DIR)): file_path = os.path.abspath(os.path.join(INPUT_JSON_DIR, file_name)) json_files.append(file_path) if args.input_avg_mq_json is not None: json_avg_mq_files = [args.input_avg_mq_json] else: json_avg_mq_files = [] for file_name in sorted(os.listdir(INPUT_JSON_AVG_MQ_DIR)): file_path = os.path.abspath(os.path.join(INPUT_JSON_AVG_MQ_DIR, file_name)) json_avg_mq_files.append(file_path) multiprocessing.set_start_method('spawn') queue1 = multiprocessing.JoinableQueue() queue2 = multiprocessing.JoinableQueue() num_files = len(newick_files) cpus = set_num_cpus(num_files, args.processes) # Set a timeout for get()s in the queue. timeout = 0.05 for i, newick_file in enumerate(newick_files): json_file = json_files[i] json_avg_mq_file = json_avg_mq_files[i] queue1.put((newick_file, json_file, json_avg_mq_file)) # Complete the preprocess_tables task. processes = [multiprocessing.Process(target=preprocess_tables, args=(queue1, annotation_dict, timeout, )) for _ in range(cpus)] for p in processes: p.start() for p in processes: p.join() queue1.join() if queue1.empty(): queue1.close() queue1.join_thread()