comparison vsnp_build_tables.py @ 0:12f2b14549f6 draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 524a39e08f2bea8b8754284df606ff8dd27ed24b"
author iuc
date Wed, 02 Dec 2020 09:11:24 +0000
parents
children b03e88e7bb1d
comparison
equal deleted inserted replaced
-1:000000000000 0:12f2b14549f6
1 #!/usr/bin/env python
2
3 import argparse
4 import multiprocessing
5 import os
6 import queue
7 import re
8
9 import pandas
10 import pandas.io.formats.excel
11 from Bio import SeqIO
12
13 INPUT_JSON_AVG_MQ_DIR = 'input_json_avg_mq_dir'
14 INPUT_JSON_DIR = 'input_json_dir'
15 INPUT_NEWICK_DIR = 'input_newick_dir'
16 # Maximum columns allowed in a LibreOffice
17 # spreadsheet is 1024. Excel allows for
18 # 16,384 columns, but we'll set the lower
19 # number as the maximum. Some browsers
20 # (e.g., Firefox on Linux) are configured
21 # to use LibreOffice for Excel spreadsheets.
22 MAXCOLS = 1024
23 OUTPUT_EXCEL_DIR = 'output_excel_dir'
24
25
26 def annotate_table(table_df, group, annotation_dict):
27 for gbk_chrome, pro in list(annotation_dict.items()):
28 ref_pos = list(table_df)
29 ref_series = pandas.Series(ref_pos)
30 ref_df = pandas.DataFrame(ref_series.str.split(':', expand=True).values, columns=['reference', 'position'])
31 all_ref = ref_df[ref_df['reference'] == gbk_chrome]
32 positions = all_ref.position.to_frame()
33 # Create an annotation file.
34 annotation_file = "%s_annotations.csv" % group
35 with open(annotation_file, "a") as fh:
36 for _, row in positions.iterrows():
37 pos = row.position
38 try:
39 aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']]
40 try:
41 chrom, name, locus, tag = aaa.values[0]
42 print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh)
43 except ValueError:
44 # If only one annotation for the entire
45 # chromosome (e.g., flu) then having [0] fails
46 chrom, name, locus, tag = aaa.values
47 print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh)
48 except KeyError:
49 print("{}:{}\tNo annotated product".format(gbk_chrome, pos), file=fh)
50 # Read the annotation file into a data frame.
51 annotations_df = pandas.read_csv(annotation_file, sep='\t', header=None, names=['index', 'annotations'], index_col='index')
52 # Remove the annotation_file from disk since both
53 # cascade and sort tables are built using the file,
54 # and it is opened for writing in append mode.
55 os.remove(annotation_file)
56 # Process the data.
57 table_df_transposed = table_df.T
58 table_df_transposed.index = table_df_transposed.index.rename('index')
59 table_df_transposed = table_df_transposed.merge(annotations_df, left_index=True, right_index=True)
60 table_df = table_df_transposed.T
61 return table_df
62
63
64 def excel_formatter(json_file_name, excel_file_name, group, annotation_dict):
65 pandas.io.formats.excel.header_style = None
66 table_df = pandas.read_json(json_file_name, orient='split')
67 if annotation_dict is not None:
68 table_df = annotate_table(table_df, group, annotation_dict)
69 else:
70 table_df = table_df.append(pandas.Series(name='no annotations'))
71 writer = pandas.ExcelWriter(excel_file_name, engine='xlsxwriter')
72 table_df.to_excel(writer, sheet_name='Sheet1')
73 writer_book = writer.book
74 ws = writer.sheets['Sheet1']
75 format_a = writer_book.add_format({'bg_color': '#58FA82'})
76 format_g = writer_book.add_format({'bg_color': '#F7FE2E'})
77 format_c = writer_book.add_format({'bg_color': '#0000FF'})
78 format_t = writer_book.add_format({'bg_color': '#FF0000'})
79 format_normal = writer_book.add_format({'bg_color': '#FDFEFE'})
80 formatlowqual = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'})
81 format_ambigous = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'})
82 format_n = writer_book.add_format({'bg_color': '#E2CFDD'})
83 rows, cols = table_df.shape
84 ws.set_column(0, 0, 30)
85 ws.set_column(1, cols, 2.1)
86 ws.freeze_panes(2, 1)
87 format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'})
88 # Set last row.
89 ws.set_row(rows + 1, cols + 1, format_annotation)
90 # Make sure that row/column locations don't overlap.
91 ws.conditional_format(rows - 2, 1, rows - 1, cols, {'type': 'cell', 'criteria': '<', 'value': 55, 'format': formatlowqual})
92 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'cell', 'criteria': '==', 'value': 'B$2', 'format': format_normal})
93 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'A', 'format': format_a})
94 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'G', 'format': format_g})
95 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'C', 'format': format_c})
96 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'T', 'format': format_t})
97 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'S', 'format': format_ambigous})
98 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'Y', 'format': format_ambigous})
99 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'R', 'format': format_ambigous})
100 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'W', 'format': format_ambigous})
101 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'K', 'format': format_ambigous})
102 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'M', 'format': format_ambigous})
103 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'N', 'format': format_n})
104 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': '-', 'format': format_n})
105 format_rotation = writer_book.add_format({})
106 format_rotation.set_rotation(90)
107 for column_num, column_name in enumerate(list(table_df.columns)):
108 ws.write(0, column_num + 1, column_name, format_rotation)
109 format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'})
110 # Set last row.
111 ws.set_row(rows, 400, format_annotation)
112 writer.save()
113
114
115 def get_annotation_dict(gbk_file):
116 gbk_dict = SeqIO.to_dict(SeqIO.parse(gbk_file, "genbank"))
117 annotation_dict = {}
118 tmp_file = "features.csv"
119 # Create a file of chromosomes and features.
120 for chromosome in list(gbk_dict.keys()):
121 with open(tmp_file, 'w+') as fh:
122 for feature in gbk_dict[chromosome].features:
123 if "CDS" in feature.type or "rRNA" in feature.type:
124 try:
125 product = feature.qualifiers['product'][0]
126 except KeyError:
127 product = None
128 try:
129 locus = feature.qualifiers['locus_tag'][0]
130 except KeyError:
131 locus = None
132 try:
133 gene = feature.qualifiers['gene'][0]
134 except KeyError:
135 gene = None
136 fh.write("%s\t%d\t%d\t%s\t%s\t%s\n" % (chromosome, int(feature.location.start), int(feature.location.end), locus, product, gene))
137 # Read the chromosomes and features file into a data frame.
138 df = pandas.read_csv(tmp_file, sep='\t', names=["chrom", "start", "stop", "locus", "product", "gene"])
139 # Process the data.
140 df = df.sort_values(['start', 'gene'], ascending=[True, False])
141 df = df.drop_duplicates('start')
142 pro = df.reset_index(drop=True)
143 pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both')
144 annotation_dict[chromosome] = pro
145 return annotation_dict
146
147
148 def get_base_file_name(file_path):
149 base_file_name = os.path.basename(file_path)
150 if base_file_name.find(".") > 0:
151 # Eliminate the extension.
152 return os.path.splitext(base_file_name)[0]
153 elif base_file_name.find("_") > 0:
154 # The dot extension was likely changed to
155 # the " character.
156 items = base_file_name.split("_")
157 return "_".join(items[0:-1])
158 else:
159 return base_file_name
160
161
162 def output_cascade_table(cascade_order, mqdf, group, annotation_dict):
163 cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner')
164 output_table(cascade_order_mq, "cascade", group, annotation_dict)
165
166
167 def output_excel(df, type_str, group, annotation_dict, count=None):
168 # Output the temporary json file that
169 # is used by the excel_formatter.
170 if count is None:
171 if group is None:
172 json_file_name = "%s_order_mq.json" % type_str
173 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str)
174 else:
175 json_file_name = "%s_%s_order_mq.json" % (group, type_str)
176 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str))
177 else:
178 if group is None:
179 json_file_name = "%s_order_mq_%d.json" % (type_str, count)
180 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count))
181 else:
182 json_file_name = "%s_%s_order_mq_%d.json" % (group, type_str, count)
183 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count))
184 df.to_json(json_file_name, orient='split')
185 # Output the Excel file.
186 excel_formatter(json_file_name, excel_file_name, group, annotation_dict)
187
188
189 def output_sort_table(cascade_order, mqdf, group, annotation_dict):
190 sort_df = cascade_order.T
191 sort_df['abs_value'] = sort_df.index
192 sort_df[['chrom', 'pos']] = sort_df['abs_value'].str.split(':', expand=True)
193 sort_df = sort_df.drop(['abs_value', 'chrom'], axis=1)
194 sort_df.pos = sort_df.pos.astype(int)
195 sort_df = sort_df.sort_values(by=['pos'])
196 sort_df = sort_df.drop(['pos'], axis=1)
197 sort_df = sort_df.T
198 sort_order_mq = pandas.concat([sort_df, mqdf], join='inner')
199 output_table(sort_order_mq, "sort", group, annotation_dict)
200
201
202 def output_table(df, type_str, group, annotation_dict):
203 if isinstance(group, str) and group.startswith("dataset"):
204 # Inputs are single files, not collections,
205 # so input file names are not useful for naming
206 # output files.
207 group_str = None
208 else:
209 group_str = group
210 count = 0
211 chunk_start = 0
212 chunk_end = 0
213 column_count = df.shape[1]
214 if column_count >= MAXCOLS:
215 # Here the number of columns is greater than
216 # the maximum allowed by Excel, so multiple
217 # outputs will be produced.
218 while column_count >= MAXCOLS:
219 count += 1
220 chunk_end += MAXCOLS
221 df_of_type = df.iloc[:, chunk_start:chunk_end]
222 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count)
223 chunk_start += MAXCOLS
224 column_count -= MAXCOLS
225 count += 1
226 df_of_type = df.iloc[:, chunk_start:]
227 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count)
228 else:
229 output_excel(df, type_str, group_str, annotation_dict)
230
231
232 def preprocess_tables(task_queue, annotation_dict, timeout):
233 while True:
234 try:
235 tup = task_queue.get(block=True, timeout=timeout)
236 except queue.Empty:
237 break
238 newick_file, json_file, json_avg_mq_file = tup
239 avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split')
240 # Map quality to dataframe.
241 mqdf = avg_mq_series.to_frame(name='MQ')
242 mqdf = mqdf.T
243 # Get the group.
244 group = get_base_file_name(newick_file)
245 snps_df = pandas.read_json(json_file, orient='split')
246 with open(newick_file, 'r') as fh:
247 for line in fh:
248 line = re.sub('[:,]', '\n', line)
249 line = re.sub('[)(]', '', line)
250 line = re.sub(r'[0-9].*\.[0-9].*\n', '', line)
251 line = re.sub('root\n', '', line)
252 sample_order = line.split('\n')
253 sample_order = list([_f for _f in sample_order if _f])
254 sample_order.insert(0, 'root')
255 tree_order = snps_df.loc[sample_order]
256 # Count number of SNPs in each column.
257 snp_per_column = []
258 for column_header in tree_order:
259 count = 0
260 column = tree_order[column_header]
261 for element in column:
262 if element != column[0]:
263 count = count + 1
264 snp_per_column.append(count)
265 row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column")
266 # Count number of SNPS from the
267 # top of each column in the table.
268 snp_from_top = []
269 for column_header in tree_order:
270 count = 0
271 column = tree_order[column_header]
272 # for each element in the column
273 # skip the first element
274 for element in column[1:]:
275 if element == column[0]:
276 count = count + 1
277 else:
278 break
279 snp_from_top.append(count)
280 row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top")
281 tree_order = tree_order.append([row1])
282 tree_order = tree_order.append([row2])
283 # In pandas=0.18.1 even this does not work:
284 # abc = row1.to_frame()
285 # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18)
286 # tree_order.append(abc)
287 # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions"
288 tree_order = tree_order.T
289 tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False])
290 tree_order = tree_order.T
291 # Remove snp_per_column and snp_from_top rows.
292 cascade_order = tree_order[:-2]
293 # Output the cascade table.
294 output_cascade_table(cascade_order, mqdf, group, annotation_dict)
295 # Output the sorted table.
296 output_sort_table(cascade_order, mqdf, group, annotation_dict)
297 task_queue.task_done()
298
299
300 def set_num_cpus(num_files, processes):
301 num_cpus = int(multiprocessing.cpu_count())
302 if num_files < num_cpus and num_files < processes:
303 return num_files
304 if num_cpus < processes:
305 half_cpus = int(num_cpus / 2)
306 if num_files < half_cpus:
307 return num_files
308 return half_cpus
309 return processes
310
311
312 if __name__ == '__main__':
313 parser = argparse.ArgumentParser()
314
315 parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', required=False, default=None, help='Average MQ json file')
316 parser.add_argument('--input_newick', action='store', dest='input_newick', required=False, default=None, help='Newick file')
317 parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', required=False, default=None, help='SNPs json file')
318 parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'),
319 parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting')
320
321 args = parser.parse_args()
322
323 if args.gbk_file is not None:
324 # Create the annotation_dict for annotating
325 # the Excel tables.
326 annotation_dict = get_annotation_dict(args.gbk_file)
327 else:
328 annotation_dict = None
329
330 # The assumption here is that the list of files
331 # in both INPUT_NEWICK_DIR and INPUT_JSON_DIR are
332 # named such that they are properly matched if
333 # the directories contain more than 1 file (i.e.,
334 # hopefully the newick file names and json file names
335 # will be something like Mbovis-01D6_* so they can be
336 # sorted and properly associated with each other).
337 if args.input_newick is not None:
338 newick_files = [args.input_newick]
339 else:
340 newick_files = []
341 for file_name in sorted(os.listdir(INPUT_NEWICK_DIR)):
342 file_path = os.path.abspath(os.path.join(INPUT_NEWICK_DIR, file_name))
343 newick_files.append(file_path)
344 if args.input_snps_json is not None:
345 json_files = [args.input_snps_json]
346 else:
347 json_files = []
348 for file_name in sorted(os.listdir(INPUT_JSON_DIR)):
349 file_path = os.path.abspath(os.path.join(INPUT_JSON_DIR, file_name))
350 json_files.append(file_path)
351 if args.input_avg_mq_json is not None:
352 json_avg_mq_files = [args.input_avg_mq_json]
353 else:
354 json_avg_mq_files = []
355 for file_name in sorted(os.listdir(INPUT_JSON_AVG_MQ_DIR)):
356 file_path = os.path.abspath(os.path.join(INPUT_JSON_AVG_MQ_DIR, file_name))
357 json_avg_mq_files.append(file_path)
358
359 multiprocessing.set_start_method('spawn')
360 queue1 = multiprocessing.JoinableQueue()
361 queue2 = multiprocessing.JoinableQueue()
362 num_files = len(newick_files)
363 cpus = set_num_cpus(num_files, args.processes)
364 # Set a timeout for get()s in the queue.
365 timeout = 0.05
366
367 for i, newick_file in enumerate(newick_files):
368 json_file = json_files[i]
369 json_avg_mq_file = json_avg_mq_files[i]
370 queue1.put((newick_file, json_file, json_avg_mq_file))
371
372 # Complete the preprocess_tables task.
373 processes = [multiprocessing.Process(target=preprocess_tables, args=(queue1, annotation_dict, timeout, )) for _ in range(cpus)]
374 for p in processes:
375 p.start()
376 for p in processes:
377 p.join()
378 queue1.join()
379
380 if queue1.empty():
381 queue1.close()
382 queue1.join_thread()