Mercurial > repos > iuc > vsnp_get_snps
comparison vsnp_add_zero_coverage.py @ 0:ec6e02f4eab7 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 95b221f68d19702681babd765c67caeeb24e7f1d"
author | iuc |
---|---|
date | Tue, 16 Nov 2021 08:26:58 +0000 |
parents | |
children | 4535ad8b74f3 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:ec6e02f4eab7 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import argparse | |
4 import os | |
5 import re | |
6 import shutil | |
7 | |
8 import pandas | |
9 import pysam | |
10 from Bio import SeqIO | |
11 | |
12 | |
13 def get_sample_name(file_path): | |
14 base_file_name = os.path.basename(file_path) | |
15 if base_file_name.find(".") > 0: | |
16 # Eliminate the extension. | |
17 return os.path.splitext(base_file_name)[0] | |
18 return base_file_name | |
19 | |
20 | |
21 def get_coverage_df(bam_file): | |
22 # Create a coverage dictionary. | |
23 coverage_dict = {} | |
24 coverage_list = pysam.depth(bam_file, split_lines=True) | |
25 for line in coverage_list: | |
26 chrom, position, depth = line.split('\t') | |
27 coverage_dict["%s-%s" % (chrom, position)] = depth | |
28 # Convert it to a data frame. | |
29 coverage_df = pandas.DataFrame.from_dict(coverage_dict, orient='index', columns=["depth"]) | |
30 return coverage_df | |
31 | |
32 | |
33 def get_zero_df(reference): | |
34 # Create a zero coverage dictionary. | |
35 zero_dict = {} | |
36 for record in SeqIO.parse(reference, "fasta"): | |
37 chrom = record.id | |
38 total_len = len(record.seq) | |
39 for pos in list(range(1, total_len + 1)): | |
40 zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 | |
41 # Convert it to a data frame with depth_x | |
42 # and depth_y columns - index is NaN. | |
43 zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) | |
44 return zero_df | |
45 | |
46 | |
47 def output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf): | |
48 column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"] | |
49 vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#') | |
50 good_snp_count = len(vcf_df[(vcf_df['ALT'].str.len() == 1) & (vcf_df['REF'].str.len() == 1) & (vcf_df['QUAL'] > 150)]) | |
51 if total_zero_coverage > 0: | |
52 header_file = "%s_header.csv" % base_file_name | |
53 with open(header_file, 'w') as outfile: | |
54 with open(vcf_file) as infile: | |
55 for line in infile: | |
56 if re.search('^#', line): | |
57 outfile.write("%s" % line) | |
58 vcf_df_snp = vcf_df[vcf_df['REF'].str.len() == 1] | |
59 vcf_df_snp = vcf_df_snp[vcf_df_snp['ALT'].str.len() == 1] | |
60 vcf_df_snp['ABS_VALUE'] = vcf_df_snp['CHROM'].map(str) + "-" + vcf_df_snp['POS'].map(str) | |
61 vcf_df_snp = vcf_df_snp.set_index('ABS_VALUE') | |
62 cat_df = pandas.concat([vcf_df_snp, zero_df], axis=1, sort=False) | |
63 cat_df = cat_df.drop(columns=['CHROM', 'POS', 'depth']) | |
64 cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']] = cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']].fillna('.') | |
65 cat_df['REF'] = cat_df['REF'].fillna('N') | |
66 cat_df['FORMAT'] = cat_df['FORMAT'].fillna('GT') | |
67 cat_df['Sample'] = cat_df['Sample'].fillna('./.') | |
68 cat_df['temp'] = cat_df.index.str.rsplit('-', n=1) | |
69 cat_df[['CHROM', 'POS']] = pandas.DataFrame(cat_df.temp.values.tolist(), index=cat_df.index) | |
70 cat_df = cat_df[['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'Sample']] | |
71 cat_df['POS'] = cat_df['POS'].astype(int) | |
72 cat_df = cat_df.sort_values(['CHROM', 'POS']) | |
73 body_file = "%s_body.csv" % base_file_name | |
74 cat_df.to_csv(body_file, sep='\t', header=False, index=False) | |
75 with open(output_vcf, "w") as outfile: | |
76 for cf in [header_file, body_file]: | |
77 with open(cf, "r") as infile: | |
78 for line in infile: | |
79 outfile.write("%s" % line) | |
80 else: | |
81 shutil.move(vcf_file, output_vcf) | |
82 return good_snp_count | |
83 | |
84 | |
85 def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics): | |
86 bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage] | |
87 vcf_metrics = [base_file_name, str(good_snp_count), "", ""] | |
88 metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"] | |
89 with open(output_metrics, "w") as fh: | |
90 fh.write("# %s\n" % "\t".join(metrics_columns)) | |
91 fh.write("%s\n" % "\t".join(bam_metrics)) | |
92 fh.write("%s\n" % "\t".join(vcf_metrics)) | |
93 | |
94 | |
95 def output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics): | |
96 base_file_name = get_sample_name(vcf_file) | |
97 good_snp_count = output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf) | |
98 output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics) | |
99 | |
100 | |
101 def get_coverage_and_snp_count(bam_file, vcf_file, reference, output_metrics, output_vcf): | |
102 coverage_df = get_coverage_df(bam_file) | |
103 zero_df = get_zero_df(reference) | |
104 coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') | |
105 # depth_x "0" column no longer needed. | |
106 coverage_df = coverage_df.drop(columns=['depth_x']) | |
107 coverage_df = coverage_df.rename(columns={'depth_y': 'depth'}) | |
108 # Covert the NaN to 0 coverage and get some metrics. | |
109 coverage_df = coverage_df.fillna(0) | |
110 coverage_df['depth'] = coverage_df['depth'].apply(int) | |
111 total_length = len(coverage_df) | |
112 average_coverage = coverage_df['depth'].mean() | |
113 zero_df = coverage_df[coverage_df['depth'] == 0] | |
114 total_zero_coverage = len(zero_df) | |
115 total_coverage = total_length - total_zero_coverage | |
116 genome_coverage = "{:.2%}".format(total_coverage / total_length) | |
117 # Output a zero-coverage vcf fil and the metrics file. | |
118 output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics) | |
119 | |
120 | |
121 if __name__ == '__main__': | |
122 parser = argparse.ArgumentParser() | |
123 | |
124 parser.add_argument('--bam_input', action='store', dest='bam_input', help='bam input file') | |
125 parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') | |
126 parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') | |
127 parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') | |
128 parser.add_argument('--vcf_input', action='store', dest='vcf_input', help='vcf input file') | |
129 | |
130 args = parser.parse_args() | |
131 | |
132 get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.reference, args.output_metrics, args.output_vcf) |