Mercurial > repos > iuc > vsnp_get_snps
comparison vsnp_add_zero_coverage.py @ 4:4535ad8b74f3 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit c38fd63f7980c70390d104a73ba4c72b266444c3
| author | iuc | 
|---|---|
| date | Fri, 10 Jun 2022 06:08:49 +0000 | 
| parents | ec6e02f4eab7 | 
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| 3:ae7b1b97a2a0 | 4:4535ad8b74f3 | 
|---|---|
| 31 | 31 | 
| 32 | 32 | 
| 33 def get_zero_df(reference): | 33 def get_zero_df(reference): | 
| 34 # Create a zero coverage dictionary. | 34 # Create a zero coverage dictionary. | 
| 35 zero_dict = {} | 35 zero_dict = {} | 
| 36 reference_length = 0 | |
| 36 for record in SeqIO.parse(reference, "fasta"): | 37 for record in SeqIO.parse(reference, "fasta"): | 
| 37 chrom = record.id | 38 chrom = record.id | 
| 38 total_len = len(record.seq) | 39 total_len = len(record.seq) | 
| 40 reference_length = reference_length + len(record.seq) | |
| 39 for pos in list(range(1, total_len + 1)): | 41 for pos in list(range(1, total_len + 1)): | 
| 40 zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 | 42 zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 | 
| 41 # Convert it to a data frame with depth_x | 43 # Convert it to a data frame with depth_x | 
| 42 # and depth_y columns - index is NaN. | 44 # and depth_y columns - index is NaN. | 
| 43 zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) | 45 zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) | 
| 44 return zero_df | 46 return zero_df, reference_length | 
| 45 | 47 | 
| 46 | 48 | 
| 47 def output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf): | 49 def output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf): | 
| 48 column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"] | 50 column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"] | 
| 49 vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#') | 51 vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#') | 
| 80 else: | 82 else: | 
| 81 shutil.move(vcf_file, output_vcf) | 83 shutil.move(vcf_file, output_vcf) | 
| 82 return good_snp_count | 84 return good_snp_count | 
| 83 | 85 | 
| 84 | 86 | 
| 85 def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics): | 87 def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, dbkey, reference, | 
| 86 bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage] | 88 reference_length, total_zero_coverage, percent_ref_with_zero_coverage, output_metrics): | 
| 87 vcf_metrics = [base_file_name, str(good_snp_count), "", ""] | 89 columns = ["BAM File", "Reference", "reference Length", "Genome with Coverage", "Average Depth", | 
| 88 metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"] | 90 "No Coverage Bases", "Percent Ref with Zero Coverage", "Quality SNPs"] | 
| 91 values = [base_file_name, dbkey, str(reference_length), genome_coverage, average_coverage, | |
| 92 str(total_zero_coverage), percent_ref_with_zero_coverage, str(good_snp_count)] | |
| 89 with open(output_metrics, "w") as fh: | 93 with open(output_metrics, "w") as fh: | 
| 90 fh.write("# %s\n" % "\t".join(metrics_columns)) | 94 fh.write("# %s\n" % "\t".join(columns)) | 
| 91 fh.write("%s\n" % "\t".join(bam_metrics)) | 95 fh.write("%s\n" % "\t".join(values)) | 
| 92 fh.write("%s\n" % "\t".join(vcf_metrics)) | |
| 93 | 96 | 
| 94 | 97 | 
| 95 def output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics): | 98 def output_files(vcf_file, total_zero_coverage, percent_ref_with_zero_coverage, zero_df, output_vcf, | 
| 99 average_coverage, genome_coverage, output_metrics, reference, reference_length, dbkey): | |
| 96 base_file_name = get_sample_name(vcf_file) | 100 base_file_name = get_sample_name(vcf_file) | 
| 97 good_snp_count = output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf) | 101 good_snp_count = output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf) | 
| 98 output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics) | 102 output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, dbkey, reference, | 
| 103 reference_length, total_zero_coverage, percent_ref_with_zero_coverage, output_metrics) | |
| 99 | 104 | 
| 100 | 105 | 
| 101 def get_coverage_and_snp_count(bam_file, vcf_file, reference, output_metrics, output_vcf): | 106 def get_coverage_and_snp_count(bam_file, vcf_file, dbkey, reference, output_metrics, output_vcf): | 
| 102 coverage_df = get_coverage_df(bam_file) | 107 coverage_df = get_coverage_df(bam_file) | 
| 103 zero_df = get_zero_df(reference) | 108 zero_df, reference_length = get_zero_df(reference) | 
| 104 coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') | 109 coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') | 
| 105 # depth_x "0" column no longer needed. | 110 # depth_x "0" column no longer needed. | 
| 106 coverage_df = coverage_df.drop(columns=['depth_x']) | 111 coverage_df = coverage_df.drop(columns=['depth_x']) | 
| 107 coverage_df = coverage_df.rename(columns={'depth_y': 'depth'}) | 112 coverage_df = coverage_df.rename(columns={'depth_y': 'depth'}) | 
| 108 # Covert the NaN to 0 coverage and get some metrics. | 113 # Covert the NaN to 0 coverage and get some metrics. | 
| 109 coverage_df = coverage_df.fillna(0) | 114 coverage_df = coverage_df.fillna(0) | 
| 110 coverage_df['depth'] = coverage_df['depth'].apply(int) | 115 coverage_df['depth'] = coverage_df['depth'].apply(int) | 
| 111 total_length = len(coverage_df) | 116 total_length = len(coverage_df) | 
| 112 average_coverage = coverage_df['depth'].mean() | 117 average_coverage = "{:.2f}".format(coverage_df['depth'].mean()) | 
| 113 zero_df = coverage_df[coverage_df['depth'] == 0] | 118 zero_df = coverage_df[coverage_df['depth'] == 0] | 
| 114 total_zero_coverage = len(zero_df) | 119 total_zero_coverage = len(zero_df) | 
| 120 percent_ref_with_zero_coverage = "{:.6%}".format(total_zero_coverage / reference_length * 100) | |
| 115 total_coverage = total_length - total_zero_coverage | 121 total_coverage = total_length - total_zero_coverage | 
| 116 genome_coverage = "{:.2%}".format(total_coverage / total_length) | 122 genome_coverage = "{:.2%}".format(total_coverage / total_length) | 
| 117 # Output a zero-coverage vcf fil and the metrics file. | 123 # Output a zero-coverage vcf fil and the metrics file. | 
| 118 output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics) | 124 output_files(vcf_file, total_zero_coverage, percent_ref_with_zero_coverage, zero_df, output_vcf, | 
| 125 average_coverage, genome_coverage, output_metrics, reference, reference_length, dbkey) | |
| 119 | 126 | 
| 120 | 127 | 
| 121 if __name__ == '__main__': | 128 if __name__ == '__main__': | 
| 122 parser = argparse.ArgumentParser() | 129 parser = argparse.ArgumentParser() | 
| 123 | 130 | 
| 124 parser.add_argument('--bam_input', action='store', dest='bam_input', help='bam input file') | 131 parser.add_argument('--bam_input', action='store', dest='bam_input', help='bam input file') | 
| 132 parser.add_argument('--dbkey', action='store', dest='dbkey', help='bam input dbkey') | |
| 125 parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') | 133 parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') | 
| 126 parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') | 134 parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') | 
| 127 parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') | 135 parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') | 
| 128 parser.add_argument('--vcf_input', action='store', dest='vcf_input', help='vcf input file') | 136 parser.add_argument('--vcf_input', action='store', dest='vcf_input', help='vcf input file') | 
| 129 | 137 | 
| 130 args = parser.parse_args() | 138 args = parser.parse_args() | 
| 131 | 139 | 
| 132 get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.reference, args.output_metrics, args.output_vcf) | 140 get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.dbkey, args.reference, args.output_metrics, args.output_vcf) | 
