Mercurial > repos > jay > pdaug_peptide_sequence_analysis
view PDAUG_Fishers_Plot/PDAUG_Fishers_Plot.py @ 2:79b1b090990b draft
"planemo upload for repository https://github.com/jaidevjoshi83/pdaug commit 8b18552f6d2b2261efebe1075ff4c18a295b94dd"
author | jay |
---|---|
date | Tue, 29 Dec 2020 18:07:32 +0000 |
parents | e59674e3a391 |
children |
line wrap: on
line source
import matplotlib matplotlib.use('Agg') import os import sys sys.path.insert(0, os.path.abspath('..')) import quantiprot from quantiprot.utils.io import load_fasta_file from quantiprot.utils.feature import Feature, FeatureSet from quantiprot.metrics.aaindex import get_aa2volume, get_aa2hydropathy from quantiprot.metrics.basic import average from matplotlib import pyplot as plt from math import log10, floor import numpy as np from matplotlib import pyplot as plt from scipy.stats import fisher_exact from quantiprot.utils.sequence import SequenceSet, compact def _count_frame(data, frame_range, num_bins): """ Count instances in a 2D frame The function discretizes the feature space into a grid of cells. Then it counts the number of instances that fall into each cell. An efficient method for counting instances is used. It performs parallel logical comparisons of data instances to vectors that hold information on grid lines. Args: data (numpy.matrix): a Nx2 data matrix frame_range (numpy.matrix): a 2x2 matrix which defines feature ranges num_bins (list): a pair defining the resolution of the 2D grid Returns: cell_counts (numpy.matrix): a matrix holding counts of instances in each grid cell bin_ranges (tuple): a pair of numpy matrices holding information on bin(grid_cell) ranges """ grid_x = np.linspace(start=frame_range[0, 0], stop=frame_range[1, 0],\ num=num_bins[0]+1, endpoint=True) grid_y = np.linspace(start=frame_range[0, 1], stop=frame_range[1, 1],\ num=num_bins[1]+1, endpoint=True) # copy because we add ones in the next lines bin_ranges = (np.copy(grid_x), np.copy(grid_y)) #Count points in each grid cell grid_x[-1] += 1 # the last cell has to contain data at the border grid_y[-1] += 1 # the last cell has to contain data at the border gte_x = np.matrix(data[:, 0] >= grid_x, dtype='float64') lt_x = np.matrix(data[:, 0] < grid_x, dtype='float64') gte_y = np.matrix(data[:, 1] >= grid_y, dtype='float64') lt_y = np.matrix(data[:, 1] < grid_y, dtype='float64') dif_x = gte_x - lt_x dif_y = gte_y - lt_y bins_x = dif_x.argmin(axis=1) - 1 bins_y = dif_y.argmin(axis=1) - 1 coords = np.concatenate((bins_x, bins_y), axis=1) cell_counts = np.zeros(shape=(len(grid_x)-1, len(grid_y)-1)) for i in range(coords.shape[0]): cell_counts[coords[i, 0], coords[i, 1]] += 1 return cell_counts, bin_ranges def local_fisher_2d(set1, set2, features=None, \ windows_per_frame=10, overlap_factor=1, frame_range=None): """ Compare local and global distribution of samples from two populations in the 2d feature space using the Fisher's exact test. The function performs the Fisher Exact Test for comparing local and global ratia of instance counts from two different populations. It uses the '_count_frame' function to discretize the feature space and get instance counts. Then it scans the 2d feature space with a sliding window and performs the Fisher Exact test. Args: set1 (SequenceSet or numpy.matrix): the first set with at least 2 sequence features. set2 (SequenceSet or numpy.matrix): the second set with at least 2 sequence features. features (tuple or list): strings with feature names for running the 2d Fisher test. If None then the first two features are used. Relevant only if 'set1' or 'set2' are SequenceSets. windows_per_frame (int): ratio between the whole feature space and the sliding window (default 10). overlap_factor (int):ratio between the size of a sliding window and a discretization grid cell (default 1). frame_range(numpy.matrix): 2x2 matrix with range of features in both dimensions. Returns final_res (dict): a dictionary including: 'odds_ratio' (numpy.matrix): a matrix of odds_ratios obtained in each sliding window position. 'p_value' (numpy.matrix): a matrix containing Fisher test outcome pvalues in each sliding window position. 'w_counts1' (numpy.matrix): a matrix with first population instance counts in each sliding window position. 'w_counts2' (numpy.matrix): a matrix with second population instance counts in each sliding window position. 'w_center_x' (numpy.matrix): matrix containing coordinates of window centers in the X dimension. 'w_center_y' (numpy.matrix): matrix containing coordinates of window centers in the Y dimension. '_bin_ranges_x' (numpy.matrix): matrix containing bin(grid_cell) ranges in the X dimension. '_bin_ranges_y' (numpy.matrix): matrix containing bin(grid_cell) ranges in the Y dimension. """ if isinstance(set1, SequenceSet): mat1 = np.transpose(np.matrix(compact(set1, features=features).columns())) if isinstance(set2, SequenceSet): mat2 = np.transpose(np.matrix(compact(set2, features=features).columns())) #Deal with window_per_frame and overlap_factor #given either as a scalar or as a list-like if not hasattr(windows_per_frame, "__len__"): w_per_frame = (windows_per_frame, windows_per_frame) else: w_per_frame = (windows_per_frame[0], windows_per_frame[1]) if not hasattr(overlap_factor, "__len__"): w_size = (overlap_factor, overlap_factor) else: w_size = (overlap_factor[0], overlap_factor[1]) num_bins = (w_per_frame[0]*w_size[0], w_per_frame[1]*w_size[1]) if frame_range is None: #Evaluate the range of features in both populations. frame_range = np.concatenate((np.minimum(mat1.min(0), mat2.min(0)),\ np.maximum(mat1.max(0), mat2.max(0)))) margin_x = (frame_range[1, 0] - frame_range[0, 0])/w_per_frame[0] margin_y = (frame_range[1, 1] - frame_range[0, 1])/w_per_frame[1] frame_range[0, 0] -= margin_x frame_range[1, 0] += margin_x frame_range[0, 1] -= margin_y frame_range[1, 1] += margin_y #Discretize feature space into NxM grid, #where N = w_per_frame[0]*w_size[0]. # M = w_per_frame[1]*w_size[1]. #count instances of population1 and population2 in each grid cell. #both bin ranges are always the same because the frame range is common. cell_counts1, bin_ranges = _count_frame(mat1, frame_range=frame_range,\ num_bins=num_bins) cell_counts2, _ = _count_frame(mat2, frame_range=frame_range,\ num_bins=num_bins) #Number of windows that fit in a single row/column of a frame w_number = (cell_counts1.shape[0]-w_size[0]+1, cell_counts1.shape[1]-w_size[1]+1) #Initialize matrices holding counts at scanning window positions. window_counts1 = np.zeros(shape=w_number) window_counts2 = np.zeros(shape=w_number) #Initialize matrices holding window coordinates window_center_x = np.zeros(shape=w_number[0]) window_center_y = np.zeros(shape=w_number[1]) #Initialize matrices holding Fisher Exact test results fisher_pv = np.ones(shape=w_number) odds_ratio = np.ones(shape=w_number) #Calculate population totals in the whole feature space all1 = cell_counts1.sum() all2 = cell_counts2.sum() #Calculate window centers for start_x in range(0, w_number[0]): window_center_x[start_x] = (bin_ranges[0][start_x]+ \ bin_ranges[0][start_x+w_size[0]])/2 for start_y in range(0, w_number[1]): window_center_y[start_y] = (bin_ranges[1][start_y]+ \ bin_ranges[1][start_y+w_size[1]])/2 #Scan the feature space with a step of 1 cell. for start_x in range(0, w_number[0]): for start_y in range(0, w_number[1]): #Count instances of each population in the window window_counts1[start_x, start_y] = \ cell_counts1[start_x:(start_x+w_size[0]), \ start_y:(start_y+w_size[1])].sum() window_counts2[start_x, start_y] = \ cell_counts2[start_x:(start_x+w_size[0]), \ start_y:(start_y+w_size[1])].sum() #Perform the Fisher Exact Test against #h0: population ratio in the window the same as in the whole space. odds_ratio[start_x, start_y], fisher_pv[start_x, start_y] =\ fisher_exact([[all1, window_counts1[start_x, start_y]],\ [all2, window_counts2[start_x, start_y]]]) fisher_res = {'p_value':fisher_pv, 'odds_ratio':odds_ratio,\ 'w_counts1':window_counts1, 'w_counts2':window_counts2,\ 'w_center_x':window_center_x, 'w_center_y':window_center_y,\ '_bin_ranges_x':bin_ranges[0], '_bin_ranges_y':bin_ranges[1]} return fisher_res def _plot_local_fisher_2d(fisher_res, xlabel="feat_1", ylabel="feat_2", pop1_label="pop_1", pop2_label="pop_2", out_file_path=None, fig_width=8, fig_hight=8, fig_hspace=0.35, fig_wspace=0.25): """ Plot results of the local Fisher's extact test in the 2d space. Args: fisher_res (dict): output from 'fisher_local_2d'. xlabel (str): name of the 1st feature to appear in the plots (default: "feat_1") ylabel (str): name of the 2nd feature to appear in the plots (default: "feat_2") pop1_label (str): name of the 1st population to appear in the plots (default: "pop_1") pop2_label (str): name of the 2nd population to appear in the plots (default: "pop_2") """ fisher_or = fisher_res["odds_ratio"] fisher_c1 = fisher_res["w_counts1"] fisher_c2 = fisher_res["w_counts2"] fisher_pv = fisher_res["p_value"] for pos_x in range(len(fisher_or)): for pos_y in range(len(fisher_or[0])): if fisher_c1[pos_x][pos_y] == 0 and fisher_c2[pos_x][pos_y] == 0: fisher_or[pos_x][pos_y] = np.nan elif fisher_c1[pos_x][pos_y] == 0: fisher_or[pos_x][pos_y] = np.inf elif fisher_c2[pos_x][pos_y] == 0: fisher_or[pos_x][pos_y] = -np.inf elif fisher_or[pos_x][pos_y] < 1: fisher_or[pos_x][pos_y] = -1.0/fisher_or[pos_x][pos_y] vmax_abs = np.nanmax(np.abs([x for x in np.array(fisher_or).flatten() if x > -np.inf and x < np.inf])) for pos_x in range(len(fisher_or)): for pos_y in range(len(fisher_or[0])): if abs(fisher_or[pos_x][pos_y]) == np.inf: fisher_or[pos_x][pos_y] = np.sign(fisher_or[pos_x][pos_y])*vmax_abs ##### Extra Fig perimeters added ################################ plt.figure(figsize=(fig_width, fig_hight)) # Figure size plt.subplots_adjust(hspace = fig_hspace, wspace = fig_wspace) # space between the subplots. ################################################################## plt.subplot(221) plt.pcolormesh(fisher_res["w_center_x"], fisher_res["w_center_y"], np.ma.masked_invalid(fisher_c1).T, cmap="Reds") plt.colorbar() plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title("Counts "+pop1_label) plt.subplot(222) plt.pcolormesh(fisher_res["w_center_x"], fisher_res["w_center_y"], np.ma.masked_invalid(fisher_c2).T, cmap="Reds") plt.colorbar() plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title("Counts "+pop2_label) cmap = plt.get_cmap('RdBu') cmap.set_bad(color='k', alpha=1.) cbar_lo = 1.0/vmax_abs cbar_lo_places = max(0, -floor(log10(cbar_lo))+1) cbar_hi = vmax_abs cbar_hi_places = max(0, -floor(log10(cbar_hi))+1) plt.subplot(223) plt.pcolormesh(fisher_res["w_center_x"], fisher_res["w_center_y"], np.ma.masked_invalid(fisher_or).T, cmap=cmap, vmin=-vmax_abs, vmax=vmax_abs) cbar = plt.colorbar(ticks=([-vmax_abs, 0, vmax_abs])) cbar.ax.set_yticklabels(['< '+str(round(cbar_lo, int(cbar_lo_places))), '1', '> '+str(round(cbar_hi, int(cbar_hi_places)))]) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title("Odds ratio") plt.subplot(224) plt.pcolormesh(fisher_res["w_center_x"], fisher_res["w_center_y"], np.log10(np.ma.masked_invalid(fisher_pv)).T, cmap="RdGy") plt.colorbar() plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title("Fisher test\np-value (logarithm of 10)") #Savefig function added with preserving default behavior if out_file_path==None: plt.show() else: plt.savefig(out_file_path,dpi=300) def HTML_Gen(html): out_html = open(html,'w') part_1 = """ <!DOCTYPE html> <html lang="en"> <head> <title>Bootstrap Example</title> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.0/css/bootstrap.min.css"> <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.0/jquery.min.js"></script> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.0/js/bootstrap.min.js"></script> <body> <style> div.container_1 { width:600px; margin: auto; padding-right: 10; } div.table { width:600px; margin: auto; padding-right: 10; } </style> </head> <div class="jumbotron text-center"> <h1> Fisher's Plot </h1> </div> <div class="container"> <div class="row"> <div class="col-sm-4"> <img src="1.png" alt="Smiley face" height="800" width="800"> </div> </div> </div> </body> </html> """ out_html.write(part_1) out_html.close() # Load sets of amyloidogenic and non-amyloidogenic peptides: def run(Fasta1, Fasta2, windows_per_frame, overlap_factor, xlabel, ylabel, pop1_label, pop2_label, htmlOutDir, htmlFname, Workdirpath): if not os.path.exists(htmlOutDir): os.makedirs(htmlOutDir) amyload_pos_seq = load_fasta_file(Fasta1) amyload_neg_seq = load_fasta_file(Fasta2) # Calculate quantitive features: volume and hydropathy mean_volume = Feature(get_aa2volume()).then(average) mean_hydropathy = Feature(get_aa2hydropathy()).then(average) fs = FeatureSet("volume'n'hydropathy") fs.add(mean_volume) fs.add(mean_hydropathy) amyload_pos_conv_seq = fs(amyload_pos_seq) amyload_neg_conv_seq = fs(amyload_neg_seq) # Do local Fisher: result = local_fisher_2d(amyload_pos_conv_seq, amyload_neg_conv_seq, windows_per_frame=int(windows_per_frame), overlap_factor=int(overlap_factor)) # Plot local Fisher: _plot_local_fisher_2d(result, xlabel=xlabel, ylabel=ylabel, pop1_label=pop1_label, pop2_label=pop2_label, out_file_path =os.path.join(os.getcwd(), "out.png") ) # plt.savefig(os.path.join(Workdirpath, htmlOutDir, "1.png")) HTML_Gen(os.path.join(Workdirpath, htmlOutDir, htmlFname)) if __name__=="__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("-f1", "--Fasta1", required=True, default=None, help="First fasta file ") parser.add_argument("-f2", "--Fasta2", required=True, default=None, help="Second fasta file") parser.add_argument("-o", "--overlap_factor", required=False, default=5, help="Overlap factor") parser.add_argument("-w", "--windows_per_frame", required=False, default=5, help="Windows per frame") parser.add_argument("-x", "--xlabel", required=True, default=None, help="X label") parser.add_argument("-y", "--ylabel", required=True, default=None, help="Y label") parser.add_argument("-p1", "--pop1_label", required=True, default=None, help="First population label") parser.add_argument("-p2", "--pop2_label", required=True, default=None, help="Second population label") parser.add_argument("--htmlOutDir", required=False, default=os.path.join(os.getcwd(),'report_dir'), help="Path to html dir") parser.add_argument("--htmlFname", required=False, help="html output file", default="report.html") parser.add_argument("--Workdirpath", required=False, default=os.getcwd(), help="Path to output Working Directory") args = parser.parse_args() run(args.Fasta1, args.Fasta2, args.windows_per_frame, args.overlap_factor, args.xlabel, args.ylabel, args.pop1_label, args.pop2_label, args.htmlOutDir, args.htmlFname, args.Workdirpath)