Mercurial > repos > jay > pdaug_tsvtofasta
view PDAUG_Peptide_Sequence_Analysis/PDAUG_Peptide_Sequence_Analysis.py @ 0:c3f0b3a6339e draft
"planemo upload for repository https://github.com/jaidevjoshi83/pdaug commit a9bd83f6a1afa6338cb6e4358b63ebff5bed155e"
author | jay |
---|---|
date | Wed, 28 Oct 2020 01:47:48 +0000 |
parents | |
children |
line wrap: on
line source
import modlamp from modlamp.analysis import * from plotly.subplots import make_subplots import plotly.graph_objects as go from modlamp.analysis import GlobalAnalysis from modlamp.analysis import * import pandas as pd import os, sys import argparse parser = argparse.ArgumentParser(description='Deployment tool') subparsers = parser.add_subparsers() CalcAAFreq = subparsers.add_parser('CalcAAFreq') CalcAAFreq.add_argument("-I","--InFile", required=True, default=None, help="") CalcAAFreq.add_argument("-T","--PlotFile", required=False, default='out.pdf', help="out.pdf") CalcAAFreq.add_argument("--OutFile", required=False, default='Out.tsv', help="Out.tsv") H = subparsers.add_parser('H') H.add_argument("-I","--InFile", required=True, default=None, help="") H.add_argument("-S","--Scale", required=False, default='eisenberg', help="hydrophobicity scale to use. For available scales, see modlamp.descriptors.PeptideDescriptor.") H.add_argument("--OutFile", required=False, default='Out.tsv', help="Out.tsv") uH = subparsers.add_parser('uH') uH.add_argument("-I","--InFile", required=True, default=None, help="") uH.add_argument("-S","--Scale", required=False, default='eisenberg', help="hydrophobicity scale to use. For available scales, see modlamp.descriptors.PeptideDescriptor.") uH.add_argument("-W", "--Window", required=False, default=1000, help="") uH.add_argument("-A", "--Angle", required=False, default=100, help="") uH.add_argument("-M", "--Modality", required=False, default='max', help="") uH.add_argument("--OutFile", required=False, default='Out.tsv', help="Out.tsv") charge = subparsers.add_parser('charge') charge.add_argument("-I","--InFile", required=True, default=None, help="") charge.add_argument("-p", "--ph", required=False, default=7.0, help="") charge.add_argument("-A", "--Amide", required=False, default=True, help="") charge.add_argument("--OutFile", required=False, default='Out.tsv', help="Out.tsv") Len = subparsers.add_parser('Len') Len.add_argument("-I","--InFile", required=True, default=None, help="") Len.add_argument("--OutFile", required=False, default='Out.tsv', help="Out.tsv") PlotSaummary = subparsers.add_parser('PlotSummary') PlotSaummary.add_argument("-I1","--InFile1", required=True, default=None, help="") PlotSaummary.add_argument("-I2", "--InFile2", required=True, default=None, help="Out.tsv") PlotSaummary.add_argument("--PlotFile", required=False, default='Out.pdf', help="out.pdf") PlotSaummary.add_argument("--htmlFname", required="False", default='report.html', help="Output file") PlotSaummary.add_argument("-O","--htmlOutDir", required=False, default=os.path.join(os.getcwd(),'report_dir'), help="HTML Out Dir") PlotSaummary.add_argument("-Wp","--Workdirpath", required=False, default=os.getcwd(), help="Working Directory Path") PlotSaummary.add_argument("-fn", "--First_lib_name", required=True, help="Name of the fist peptide data") PlotSaummary.add_argument("-sn", "--Second_lib_name", required=True, help="Name of the second peptide data") args = parser.parse_args() def SummaryPlot(Lib_1, Lib_2, First_lib_name, Second_lib_Name, Workdirpath, htmlOutDir, htmlFname): if not os.path.exists(htmlOutDir): os.makedirs(htmlOutDir) AA = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] Pep1, Index1 = ReturnPeptide(Lib_1) Pep2, Index2 = ReturnPeptide(Lib_2) fig = make_subplots( rows=2, cols=3, specs=[[{"type": "xy"}, {"type": "histogram"}, {"type": "box"} ],[{"type": "violin"}, {"type": "violin"}, {"type": "scatter3d"} ]], subplot_titles=(" Amino Acid Fraction", "Global Charge", "Length Distribution", "Global Hydrophobicity", "Global Hydrophobic Movement", "Scatter Plot")) ######################################### g = GlobalAnalysis([Pep1, Pep2]) df = g.calc_aa_freq(plot=False) data1 = g.aafreq[0] data2 = g.aafreq[1] fig.add_trace(go.Bar(x=AA, y=data1, name=First_lib_name, marker_color='#1F77B4'), row=1, col=1) fig.add_trace(go.Bar( x=AA, y=data2,name=Second_lib_Name, marker_color='#FF7F0E'), row=1, col=1) fig.update_layout(showlegend=True) ########################################## ######################################### d1 = GlobalDescriptor(Pep1) d1.calculate_charge(ph=7.4, amide=True) charge1 = [x[0] for x in d1.descriptor] d2 = GlobalDescriptor(Pep2) d2.calculate_charge(ph=7.4, amide=True) charge2 = [x[0] for x in d2.descriptor] fig.add_trace(go.Histogram(x=charge1, histnorm='probability', marker_color='#1F77B4', name=First_lib_name, xbins=dict( start=min(charge1), end=max(charge1), ), opacity=0.75), row=1, col=2) fig.add_trace(go.Histogram( x=charge2, histnorm='probability', marker_color='#FF7F0E', name=Second_lib_Name, xbins=dict( start=min(charge2), end=max(charge2), ), opacity=0.75), row=1, col=2 ) #fig.update_layout( , xaxis_title_text='Charge', yaxis_title_text='Fraction', bargap=0.1, bargroupgap=0.1 ) ########################################### ############################################################################## Length1 = [len(x) for x in Pep1] Length2 = [len(x) for x in Pep2] fig.add_trace(go.Box(y=Length1, name=First_lib_name, marker_color='#1F77B4'), row=1, col=3) fig.add_trace(go.Box(y=Length2, name=Second_lib_Name, marker_color='#FF7F0E'), row=1, col=3) ############################################################################# ######################################################################## g = GlobalAnalysis([Pep1, Pep2]) g.calc_H() h1 = g.H[0] h2 = g.H[1] fig.add_trace(go.Violin( y=h1,box_visible=True, name =First_lib_name, marker_color='#1F77B4', meanline_visible=True), row=2, col=1) fig.add_trace(go.Violin(y=h2,box_visible=True, name=Second_lib_Name, marker_color='#FF7F0E', meanline_visible=True), row=2, col=1) ################################################################# ##################################### uH = GlobalAnalysis([Pep1, Pep2]) uH.calc_uH() uh1 = uH.uH[0] uh2 = uH.uH[1] fig.add_trace(go.Violin( y=uh1,box_visible=True, name =First_lib_name, marker_color='#1F77B4', meanline_visible=True), row=2, col=2) fig.add_trace(go.Violin(y=uh2,box_visible=True, name=Second_lib_Name, marker_color='#FF7F0E', meanline_visible=True), row=2, col=2) ####################################### ############################################ fig.add_trace(go.Scatter3d(x=h1, y=uh1, z=charge1, marker_color='#1F77B4', mode='markers', name=First_lib_name, marker_size=3.0),row=2, col=3) fig.add_trace(go.Scatter3d(x=h2, y=uh2, z=charge2, marker_color='#FF7F0E', mode='markers', name=Second_lib_Name, marker_size=3.0), row=2, col=3) fig.update_layout(scene = dict(xaxis_title='Hydrophobicity', yaxis_title='Hydrophobic Movement', zaxis_title='Charge'),uniformtext_minsize=4, font=dict( family="Times New Roman", size=12, color="black")) ########################################### fig.update_xaxes(title_text="Amino Acid", row=1, col=1) fig.update_xaxes(title_text="Global Charge", row=1, col=2) fig.update_xaxes(title_text="Peptide dataset", showgrid=False, row=1, col=3) fig.update_xaxes(title_text="Peptide dataset", row=2, col=1) fig.update_xaxes(title_text="Peptide dataset", row=2, col=2) fig.update_yaxes(title_text="Fraction", row=1, col=1) fig.update_yaxes(title_text="Fraction", row=1, col=2) fig.update_yaxes(title_text="Length", row=1, col=3) fig.update_yaxes(title_text="Global hydrophobicity", row=2, col=1) fig.update_yaxes(title_text="Global hydrophobic Movement", row=2, col=2) fig.write_html(os.path.join(Workdirpath, htmlOutDir, htmlFname)) #fig.show() def ReturnPeptide(Infile): file = open(Infile) lines = file.readlines() Index = [] Pep = [] for line in lines: if '>' in line: line = line.strip('\n') line = line.strip('\r') Index.append(line.strip('\n')) else: line = line.strip('\n') line = line.strip('\r') Pep.append(line) return Pep, Index if sys.argv[1] == 'CalcAAFreq': Pep, Index = ReturnPeptide(args.InFile) g = GlobalAnalysis(Pep) g.calc_aa_freq(plot=False, color='#83AF9B') df1 = pd.DataFrame(g.aafreq[0], columns=['aa_freq']) df1.to_csv(args.OutFile, sep='\t', index=None) elif sys.argv[1] == 'H': Pep, _ = ReturnPeptide(args.InFile) g = GlobalAnalysis(Pep) g.calc_H(args.Scale) df1 = pd.DataFrame(g.H[0].T, columns=['H']) df1.to_csv(args.OutFile, sep='\t', index=None) elif sys.argv[1] == 'uH': Pep, _ = ReturnPeptide(args.InFile) g = GlobalAnalysis(Pep) g.calc_uH(int(args.Window), int(args.Angle), args.Modality) df1 = pd.DataFrame(g.uH[0].T, columns=['uH']) df1.to_csv(args.OutFile, sep='\t', index=None) elif sys.argv[1] == 'charge': Pep, _ = ReturnPeptide(args.InFile) g = GlobalAnalysis(Pep) if args.Amide == 'true': amide = True else: amide = False g.calc_charge(float(args.ph), amide) df1 = pd.DataFrame(g.charge[0].T, columns=['charge']) df1.to_csv(args.OutFile, sep='\t', index=None) elif sys.argv[1] == 'Len': Pep, _ = ReturnPeptide(args.InFile) df1 = pd.DataFrame([len(x) for x in Pep], columns=['c']) df1.to_csv( args.OutFile, sep='\t', index=None) elif sys.argv[1] == "PlotSummary": SummaryPlot(args.InFile1, args.InFile2, args.First_lib_name, args.Second_lib_name, args.Workdirpath, args.htmlOutDir, args.htmlFname)