Mercurial > repos > jfb > kinatest_fisher_test
view KT-ID fisher test/7-7-fisher-galaxy_working.R @ 2:31f6858163bd draft
Uploaded
author | jfb |
---|---|
date | Mon, 14 Jan 2019 13:33:18 -0500 |
parents | ae988a95b761 |
children | 203c72c1c2ea |
line wrap: on
line source
oldw <- getOption("warn") options(warn = -1) PositiveSubstrateList<- read.csv("substrates.csv", stringsAsFactors=FALSE) NegativeSubstrateList<- read.csv("negatives.csv", stringsAsFactors=FALSE) SubstrateBackgroundFrequency<- read.csv("SBF.csv", stringsAsFactors=FALSE) SubstrateBackgroundFrequency<-t(SubstrateBackgroundFrequency) ScreenerFilename<-"screener" screaner<-read.csv(ScreenerFilename, header = FALSE, stringsAsFactors = FALSE) DataFilename<-"thedata.RData" load(DataFilename) SDtableAndPercentTable<-"output1.csv" NormalizationScore_CharacterizationTable<-"output2.csv" SequenceScoringAndScreening<-"output3.csv" SiteSelectivityTable_EndogenousProbabilityMatrix_NormalizationScore_CharacterizationTable<-NormalizationScore_CharacterizationTable FILENAME2<-NormalizationScore_CharacterizationTable FILENAME3<-SequenceScoringAndScreening substrates<-matrix(rep("A",times=((nrow(PositiveSubstrateList)-1)*15)),ncol = 15) for (i in 2:nrow(PositiveSubstrateList)) { substratemotif<-PositiveSubstrateList[i,4:18] substratemotif[8]<-"Y" #substratemotif<-paste(substratemotif,sep = "",collapse = "") j=i-1 substratemotif<-unlist(substratemotif) substrates[j,1:15]<-substratemotif } substrates2<-substrates substrates2[substrates2==""]<-"O" #I will make it so that all blank values in substrates get a O after I'm done with it # SpacesToOs<-c(""="O",) # substrates<-SpacesToOs[substrates] #create the percent table if (1==1){ Column1<-substrates[,1] Column2<-substrates[,2] Column3<-substrates[,3] Column4<-substrates[,4] Column5<-substrates[,5] Column6<-substrates[,6] Column7<-substrates[,7] Column8<-substrates[,8] Column9<-substrates[,9] Column10<-substrates[,10] Column11<-substrates[,11] Column12<-substrates[,12] Column13<-substrates[,13] Column14<-substrates[,14] Column15<-substrates[,15] spaces1<-sum(Column1%in% "") spaces2<-sum(Column2%in% "") spaces3<-sum(Column3%in% "") spaces4<-sum(Column4%in% "") spaces5<-sum(Column5%in% "") spaces6<-sum(Column6%in% "") spaces7<-sum(Column7%in% "") spaces8<-sum(Column8%in% "") spaces9<-sum(Column9%in% "") spaces10<-sum(Column10%in% "") spaces11<-sum(Column11%in% "") spaces12<-sum(Column12%in% "") spaces13<-sum(Column13%in% "") spaces14<-sum(Column14%in% "") spaces15<-sum(Column15%in% "") OllOs<-cbind(spaces1,spaces2,spaces3,spaces4,spaces5,spaces6,spaces7,spaces8,spaces9,spaces10,spaces11, spaces12,spaces13,spaces14,spaces15) A1<-sum(Column1 %in% "A") A2<-sum(Column2 %in% "A") A3<-sum(Column3 %in% "A") A4<-sum(Column4 %in% "A") A5<-sum(Column5 %in% "A") A6<-sum(Column6 %in% "A") A7<-sum(Column7 %in% "A") A8<-sum(Column8 %in% "A") A9<-sum(Column9 %in% "A") A10<-sum(Column10 %in% "A") A11<-sum(Column11 %in% "A") A12<-sum(Column12 %in% "A") A13<-sum(Column13 %in% "A") A14<-sum(Column14 %in% "A") A15<-sum(Column15 %in% "A") AllAs<-cbind(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15) C1<-sum(Column1 %in% "C") C2<-sum(Column2 %in% "C") C3<-sum(Column3 %in% "C") C4<-sum(Column4 %in% "C") C5<-sum(Column5 %in% "C") C6<-sum(Column6 %in% "C") C7<-sum(Column7 %in% "C") C8<-sum(Column8 %in% "C") C9<-sum(Column9 %in% "C") C10<-sum(Column10 %in% "C") C11<-sum(Column11 %in% "C") C12<-sum(Column12 %in% "C") C13<-sum(Column13 %in% "C") C14<-sum(Column14 %in% "C") C15<-sum(Column15 %in% "C") CllCs<-cbind(C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15) D1<-sum(Column1 %in% "D") D2<-sum(Column2 %in% "D") D3<-sum(Column3 %in% "D") D4<-sum(Column4 %in% "D") D5<-sum(Column5 %in% "D") D6<-sum(Column6 %in% "D") D7<-sum(Column7 %in% "D") D8<-sum(Column8 %in% "D") D9<-sum(Column9 %in% "D") D10<-sum(Column10 %in% "D") D11<-sum(Column11 %in% "D") D12<-sum(Column12 %in% "D") D13<-sum(Column13 %in% "D") D14<-sum(Column14 %in% "D") D15<-sum(Column15 %in% "D") DllDs<-cbind(D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15) E1<-sum(Column1 %in% "E") E2<-sum(Column2 %in% "E") E3<-sum(Column3 %in% "E") E4<-sum(Column4 %in% "E") E5<-sum(Column5 %in% "E") E6<-sum(Column6 %in% "E") E7<-sum(Column7 %in% "E") E8<-sum(Column8 %in% "E") E9<-sum(Column9 %in% "E") E10<-sum(Column10 %in% "E") E11<-sum(Column11 %in% "E") E12<-sum(Column12 %in% "E") E13<-sum(Column13 %in% "E") E14<-sum(Column14 %in% "E") E15<-sum(Column15 %in% "E") EllEs<-cbind(E1,E2,E3,E4,E5,E6,E7,E8,E9,E10,E11,E12,E13,E14,E15) F1<-sum(Column1 %in% "F") F2<-sum(Column2 %in% "F") F3<-sum(Column3 %in% "F") F4<-sum(Column4 %in% "F") F5<-sum(Column5 %in% "F") F6<-sum(Column6 %in% "F") F7<-sum(Column7 %in% "F") F8<-sum(Column8 %in% "F") F9<-sum(Column9 %in% "F") F10<-sum(Column10 %in% "F") F11<-sum(Column11 %in% "F") F12<-sum(Column12 %in% "F") F13<-sum(Column13 %in% "F") F14<-sum(Column14 %in% "F") F15<-sum(Column15 %in% "F") FllFs<-cbind(F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15) G1<-sum(Column1 %in% "G") G2<-sum(Column2 %in% "G") G3<-sum(Column3 %in% "G") G4<-sum(Column4 %in% "G") G5<-sum(Column5 %in% "G") G6<-sum(Column6 %in% "G") G7<-sum(Column7 %in% "G") G8<-sum(Column8 %in% "G") G9<-sum(Column9 %in% "G") G10<-sum(Column10 %in% "G") G11<-sum(Column11 %in% "G") G12<-sum(Column12 %in% "G") G13<-sum(Column13 %in% "G") G14<-sum(Column14 %in% "G") G15<-sum(Column15 %in% "G") GllGs<-cbind(G1,G2,G3,G4,G5,G6,G7,G8,G9,G10,G11,G12,G13,G14,G15) H1<-sum(Column1 %in% "H") H2<-sum(Column2 %in% "H") H3<-sum(Column3 %in% "H") H4<-sum(Column4 %in% "H") H5<-sum(Column5 %in% "H") H6<-sum(Column6 %in% "H") H7<-sum(Column7 %in% "H") H8<-sum(Column8 %in% "H") H9<-sum(Column9 %in% "H") H10<-sum(Column10 %in% "H") H11<-sum(Column11 %in% "H") H12<-sum(Column12 %in% "H") H13<-sum(Column13 %in% "H") H14<-sum(Column14 %in% "H") H15<-sum(Column15 %in% "H") HllHs<-cbind(H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15) I1<-sum(Column1 %in% "I") I2<-sum(Column2 %in% "I") I3<-sum(Column3 %in% "I") I4<-sum(Column4 %in% "I") I5<-sum(Column5 %in% "I") I6<-sum(Column6 %in% "I") I7<-sum(Column7 %in% "I") I8<-sum(Column8 %in% "I") I9<-sum(Column9 %in% "I") I10<-sum(Column10 %in% "I") I11<-sum(Column11 %in% "I") I12<-sum(Column12 %in% "I") I13<-sum(Column13 %in% "I") I14<-sum(Column14 %in% "I") I15<-sum(Column15 %in% "I") IllIs<-cbind(I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15) K1<-sum(Column1 %in% "K") K2<-sum(Column2 %in% "K") K3<-sum(Column3 %in% "K") K4<-sum(Column4 %in% "K") K5<-sum(Column5 %in% "K") K6<-sum(Column6 %in% "K") K7<-sum(Column7 %in% "K") K8<-sum(Column8 %in% "K") K9<-sum(Column9 %in% "K") K10<-sum(Column10 %in% "K") K11<-sum(Column11 %in% "K") K12<-sum(Column12 %in% "K") K13<-sum(Column13 %in% "K") K14<-sum(Column14 %in% "K") K15<-sum(Column15 %in% "K") KllKs<-cbind(K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15) L1<-sum(Column1 %in% "L") L2<-sum(Column2 %in% "L") L3<-sum(Column3 %in% "L") L4<-sum(Column4 %in% "L") L5<-sum(Column5 %in% "L") L6<-sum(Column6 %in% "L") L7<-sum(Column7 %in% "L") L8<-sum(Column8 %in% "L") L9<-sum(Column9 %in% "L") L10<-sum(Column10 %in% "L") L11<-sum(Column11 %in% "L") L12<-sum(Column12 %in% "L") L13<-sum(Column13 %in% "L") L14<-sum(Column14 %in% "L") L15<-sum(Column15 %in% "L") LllLs<-cbind(L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15) M1<-sum(Column1 %in% "M") M2<-sum(Column2 %in% "M") M3<-sum(Column3 %in% "M") M4<-sum(Column4 %in% "M") M5<-sum(Column5 %in% "M") M6<-sum(Column6 %in% "M") M7<-sum(Column7 %in% "M") M8<-sum(Column8 %in% "M") M9<-sum(Column9 %in% "M") M10<-sum(Column10 %in% "M") M11<-sum(Column11 %in% "M") M12<-sum(Column12 %in% "M") M13<-sum(Column13 %in% "M") M14<-sum(Column14 %in% "M") M15<-sum(Column15 %in% "M") MllMs<-cbind(M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15) N1<-sum(Column1 %in% "N") N2<-sum(Column2 %in% "N") N3<-sum(Column3 %in% "N") N4<-sum(Column4 %in% "N") N5<-sum(Column5 %in% "N") N6<-sum(Column6 %in% "N") N7<-sum(Column7 %in% "N") N8<-sum(Column8 %in% "N") N9<-sum(Column9 %in% "N") N10<-sum(Column10 %in% "N") N11<-sum(Column11 %in% "N") N12<-sum(Column12 %in% "N") N13<-sum(Column13 %in% "N") N14<-sum(Column14 %in% "N") N15<-sum(Column15 %in% "N") NllNs<-cbind(N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N12,N13,N14,N15) P1<-sum(Column1 %in% "P") P2<-sum(Column2 %in% "P") P3<-sum(Column3 %in% "P") P4<-sum(Column4 %in% "P") P5<-sum(Column5 %in% "P") P6<-sum(Column6 %in% "P") P7<-sum(Column7 %in% "P") P8<-sum(Column8 %in% "P") P9<-sum(Column9 %in% "P") P10<-sum(Column10 %in% "P") P11<-sum(Column11 %in% "P") P12<-sum(Column12 %in% "P") P13<-sum(Column13 %in% "P") P14<-sum(Column14 %in% "P") P15<-sum(Column15 %in% "P") PllPs<-cbind(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15) Q1<-sum(Column1 %in% "Q") Q2<-sum(Column2 %in% "Q") Q3<-sum(Column3 %in% "Q") Q4<-sum(Column4 %in% "Q") Q5<-sum(Column5 %in% "Q") Q6<-sum(Column6 %in% "Q") Q7<-sum(Column7 %in% "Q") Q8<-sum(Column8 %in% "Q") Q9<-sum(Column9 %in% "Q") Q10<-sum(Column10 %in% "Q") Q11<-sum(Column11 %in% "Q") Q12<-sum(Column12 %in% "Q") Q13<-sum(Column13 %in% "Q") Q14<-sum(Column14 %in% "Q") Q15<-sum(Column15 %in% "Q") QllQs<-cbind(Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11,Q12,Q13,Q14,Q15) R1<-sum(Column1 %in% "R") R2<-sum(Column2 %in% "R") R3<-sum(Column3 %in% "R") R4<-sum(Column4 %in% "R") R5<-sum(Column5 %in% "R") R6<-sum(Column6 %in% "R") R7<-sum(Column7 %in% "R") R8<-sum(Column8 %in% "R") R9<-sum(Column9 %in% "R") R10<-sum(Column10 %in% "R") R11<-sum(Column11 %in% "R") R12<-sum(Column12 %in% "R") R13<-sum(Column13 %in% "R") R14<-sum(Column14 %in% "R") R15<-sum(Column15 %in% "R") RllRs<-cbind(R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15) S1<-sum(Column1 %in% "S") S2<-sum(Column2 %in% "S") S3<-sum(Column3 %in% "S") S4<-sum(Column4 %in% "S") S5<-sum(Column5 %in% "S") S6<-sum(Column6 %in% "S") S7<-sum(Column7 %in% "S") S8<-sum(Column8 %in% "S") S9<-sum(Column9 %in% "S") S10<-sum(Column10 %in% "S") S11<-sum(Column11 %in% "S") S12<-sum(Column12 %in% "S") S13<-sum(Column13 %in% "S") S14<-sum(Column14 %in% "S") S15<-sum(Column15 %in% "S") SllSs<-cbind(S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15) T1<-sum(Column1 %in% "T") T2<-sum(Column2 %in% "T") T3<-sum(Column3 %in% "T") T4<-sum(Column4 %in% "T") T5<-sum(Column5 %in% "T") T6<-sum(Column6 %in% "T") T7<-sum(Column7 %in% "T") T8<-sum(Column8 %in% "T") T9<-sum(Column9 %in% "T") T10<-sum(Column10 %in% "T") T11<-sum(Column11 %in% "T") T12<-sum(Column12 %in% "T") T13<-sum(Column13 %in% "T") T14<-sum(Column14 %in% "T") T15<-sum(Column15 %in% "T") TllTs<-cbind(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15) V1<-sum(Column1 %in% "V") V2<-sum(Column2 %in% "V") V3<-sum(Column3 %in% "V") V4<-sum(Column4 %in% "V") V5<-sum(Column5 %in% "V") V6<-sum(Column6 %in% "V") V7<-sum(Column7 %in% "V") V8<-sum(Column8 %in% "V") V9<-sum(Column9 %in% "V") V10<-sum(Column10 %in% "V") V11<-sum(Column11 %in% "V") V12<-sum(Column12 %in% "V") V13<-sum(Column13 %in% "V") V14<-sum(Column14 %in% "V") V15<-sum(Column15 %in% "V") VllVs<-cbind(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15) W1<-sum(Column1 %in% "W") W2<-sum(Column2 %in% "W") W3<-sum(Column3 %in% "W") W4<-sum(Column4 %in% "W") W5<-sum(Column5 %in% "W") W6<-sum(Column6 %in% "W") W7<-sum(Column7 %in% "W") W8<-sum(Column8 %in% "W") W9<-sum(Column9 %in% "W") W10<-sum(Column10 %in% "W") W11<-sum(Column11 %in% "W") W12<-sum(Column12 %in% "W") W13<-sum(Column13 %in% "W") W14<-sum(Column14 %in% "W") W15<-sum(Column15 %in% "W") WllWs<-cbind(W1,W2,W3,W4,W5,W6,W7,W8,W9,W10,W11,W12,W13,W14,W15) Y1<-sum(Column1 %in% "Y") Y2<-sum(Column2 %in% "Y") Y3<-sum(Column3 %in% "Y") Y4<-sum(Column4 %in% "Y") Y5<-sum(Column5 %in% "Y") Y6<-sum(Column6 %in% "Y") Y7<-sum(Column7 %in% "Y") Y8<-sum(Column8 %in% "Y") Y9<-sum(Column9 %in% "Y") Y10<-sum(Column10 %in% "Y") Y11<-sum(Column11 %in% "Y") Y12<-sum(Column12 %in% "Y") Y13<-sum(Column13 %in% "Y") Y14<-sum(Column14 %in% "Y") Y15<-sum(Column15 %in% "Y") YllYs<-cbind(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12,Y13,Y14,Y15) } #this is substrate percents #A C D E F G H I K L N P Q R S T V W Y O AllSubBackFreq<-array(data = NA,dim = c(21,15,nrow(SubstrateBackgroundFrequency))) # vectorvictor<-rep(1,times=nrow(SubstrateBackgroundFrequency)) # AllSubBackFreq[20,5,]<-vectorvictor #this is where I'm creating the new SubBackFreq table, I have a list with all possible SBF matrices, #I perform a for function to find all the matrices that are in Substrate Background Frequency #and place them all in this array, then I will do mean and SD AAccessionNumbers<-SubstrateBackgroundFrequency[,1] AllGeneNames<-names(Genelist) number_replaced<-0 totalmotifs<-0 for (z in 1:length(AAccessionNumbers)) { pattern<-AAccessionNumbers[z] referencepoint<-grepl(pattern = pattern, x=AllGeneNames,fixed = TRUE) #so take the accession number and find which matrix corresponds to that accession number referencenumber<-which(referencepoint==TRUE) if (length(referencenumber)<1){referencenumber<-FALSE} # if (referencenumber==FALSE) # ThisMatix<-array(data=NA, dim = c(21,9)) if (referencenumber!=FALSE){ print(pattern) print(referencenumber) motifs<-unlist(Genelist[[referencenumber]]) therow<-c(1:15) for (a in 1:length(motifs)) { thecut<-unlist(strsplit(motifs[a], split="")) edges<-c("O","O","O","O","O","O","O") thecut<-c(edges,thecut,edges) theYs<-which(thecut=="Y") for (q in 1:length(theYs)) { thiscut<-thecut[(theYs[q]-7):(theYs[q]+7)] therow<-rbind(therow,thiscut) totalmotifs<-totalmotifs+1 } } #I hate for loops but I'm doing them anyway cutreplacement<-c("X","X","X","X","X","X","X","X","X","X","X","X","X","X","X") for (t in 1:nrow(therow)) { compare1<-therow[t,1:15] compare1<-paste(compare1,sep = "",collapse = "") for (v in 1:nrow(substrates2)) { positivesubstrate<-substrates2[v,1:15] positivesubstrate<-paste(positivesubstrate,sep = "",collapse = "") if (compare1==positivesubstrate){ therow[t,1:15]<-cutreplacement number_replaced<-number_replaced+1 } } } #remember here #here's what I want to do: every motif gets archived individually as how many AAs are left and right #of the Y, THEN I take SD and Mean of that?!?!?! #... no. I'M GOING TO SUM UP ALL THE INDIVIDUAL AAs AT EACH POSITION #then divide them by total number of motifs #then just divide percent table by that #then find out if it's significant with a test Column1<-therow[,1] Column2<-therow[,2] Column3<-therow[,3] Column4<-therow[,4] Column5<-therow[,5] Column6<-therow[,6] Column7<-therow[,7] Column8<-therow[,8] Column9<-therow[,9] Column10<-therow[,10] Column11<-therow[,11] Column12<-therow[,12] Column13<-therow[,13] Column14<-therow[,14] Column15<-therow[,15] slice1<-c(sum(Column1=="A"),sum(Column1=="C"),sum(Column1=="D"),sum(Column1=="E"),sum(Column1=="F"), sum(Column1=="G"),sum(Column1=="H"),sum(Column1=="I"),sum(Column1=="K"),sum(Column1=="L"), sum(Column1=="M"),sum(Column1=="N"),sum(Column1=="P"),sum(Column1=="Q"),sum(Column1=="R"), sum(Column1=="S"),sum(Column1=="T"),sum(Column1=="V"),sum(Column1=="W"),sum(Column1=="Y"), sum(Column1=="O")) slice2<-c(sum(Column2=="A"),sum(Column2=="C"),sum(Column2=="D"),sum(Column2=="E"),sum(Column2=="F"), sum(Column2=="G"),sum(Column2=="H"),sum(Column2=="I"),sum(Column2=="K"),sum(Column2=="L"), sum(Column2=="M"),sum(Column2=="N"),sum(Column2=="P"),sum(Column2=="Q"),sum(Column2=="R"), sum(Column2=="S"),sum(Column2=="T"),sum(Column2=="V"),sum(Column2=="W"),sum(Column2=="Y"), sum(Column2=="O")) slice3<-c(sum(Column3=="A"),sum(Column3=="C"),sum(Column3=="D"),sum(Column3=="E"),sum(Column3=="F"), sum(Column3=="G"),sum(Column3=="H"),sum(Column3=="I"),sum(Column3=="K"),sum(Column3=="L"), sum(Column3=="M"),sum(Column3=="N"),sum(Column3=="P"),sum(Column3=="Q"),sum(Column3=="R"), sum(Column3=="S"),sum(Column3=="T"),sum(Column3=="V"),sum(Column3=="W"),sum(Column3=="Y"), sum(Column3=="O")) slice4<-c(sum(Column4=="A"),sum(Column4=="C"),sum(Column4=="D"),sum(Column4=="E"),sum(Column4=="F"), sum(Column4=="G"),sum(Column4=="H"),sum(Column4=="I"),sum(Column4=="K"),sum(Column4=="L"), sum(Column4=="M"),sum(Column4=="N"),sum(Column4=="P"),sum(Column4=="Q"),sum(Column4=="R"), sum(Column4=="S"),sum(Column4=="T"),sum(Column4=="V"),sum(Column4=="W"),sum(Column4=="Y"), sum(Column4=="O")) slice5<-c(sum(Column5=="A"),sum(Column5=="C"),sum(Column5=="D"),sum(Column5=="E"),sum(Column5=="F"), sum(Column5=="G"),sum(Column5=="H"),sum(Column5=="I"),sum(Column5=="K"),sum(Column5=="L"), sum(Column5=="M"),sum(Column5=="N"),sum(Column5=="P"),sum(Column5=="Q"),sum(Column5=="R"), sum(Column5=="S"),sum(Column5=="T"),sum(Column5=="V"),sum(Column5=="W"),sum(Column5=="Y"), sum(Column5=="O")) slice6<-c(sum(Column6=="A"),sum(Column6=="C"),sum(Column6=="D"),sum(Column6=="E"),sum(Column6=="F"), sum(Column6=="G"),sum(Column6=="H"),sum(Column6=="I"),sum(Column6=="K"),sum(Column6=="L"), sum(Column6=="M"),sum(Column6=="N"),sum(Column6=="P"),sum(Column6=="Q"),sum(Column6=="R"), sum(Column6=="S"),sum(Column6=="T"),sum(Column6=="V"),sum(Column6=="W"),sum(Column6=="Y"), sum(Column6=="O")) slice7<-c(sum(Column7=="A"),sum(Column7=="C"),sum(Column7=="D"),sum(Column7=="E"),sum(Column7=="F"), sum(Column7=="G"),sum(Column7=="H"),sum(Column7=="I"),sum(Column7=="K"),sum(Column7=="L"), sum(Column7=="M"),sum(Column7=="N"),sum(Column7=="P"),sum(Column7=="Q"),sum(Column7=="R"), sum(Column7=="S"),sum(Column7=="T"),sum(Column7=="V"),sum(Column7=="W"),sum(Column7=="Y"), sum(Column7=="O")) slice8<-c(sum(Column8=="A"),sum(Column8=="C"),sum(Column8=="D"),sum(Column8=="E"),sum(Column8=="F"), sum(Column8=="G"),sum(Column8=="H"),sum(Column8=="I"),sum(Column8=="K"),sum(Column8=="L"), sum(Column8=="M"),sum(Column8=="N"),sum(Column8=="P"),sum(Column8=="Q"),sum(Column8=="R"), sum(Column8=="S"),sum(Column8=="T"),sum(Column8=="V"),sum(Column8=="W"),sum(Column8=="Y"), sum(Column8=="O")) slice9<-c(sum(Column9=="A"),sum(Column9=="C"),sum(Column9=="D"),sum(Column9=="E"),sum(Column9=="F"), sum(Column9=="G"),sum(Column9=="H"),sum(Column9=="I"),sum(Column9=="K"),sum(Column9=="L"), sum(Column9=="M"),sum(Column9=="N"),sum(Column9=="P"),sum(Column9=="Q"),sum(Column9=="R"), sum(Column9=="S"),sum(Column9=="T"),sum(Column9=="V"),sum(Column9=="W"),sum(Column9=="Y"), sum(Column9=="O")) slice10<-c(sum(Column10=="A"),sum(Column10=="C"),sum(Column10=="D"),sum(Column10=="E"),sum(Column10=="F"), sum(Column10=="G"),sum(Column10=="H"),sum(Column10=="I"),sum(Column10=="K"),sum(Column10=="L"), sum(Column10=="M"),sum(Column10=="N"),sum(Column10=="P"),sum(Column10=="Q"),sum(Column10=="R"), sum(Column10=="S"),sum(Column10=="T"),sum(Column10=="V"),sum(Column10=="W"),sum(Column10=="Y"), sum(Column10=="O")) slice11<-c(sum(Column11=="A"),sum(Column11=="C"),sum(Column11=="D"),sum(Column11=="E"),sum(Column11=="F"), sum(Column11=="G"),sum(Column11=="H"),sum(Column11=="I"),sum(Column11=="K"),sum(Column11=="L"), sum(Column11=="M"),sum(Column11=="N"),sum(Column11=="P"),sum(Column11=="Q"),sum(Column11=="R"), sum(Column11=="S"),sum(Column11=="T"),sum(Column11=="V"),sum(Column11=="W"),sum(Column11=="Y"), sum(Column11=="O")) slice12<-c(sum(Column12=="A"),sum(Column12=="C"),sum(Column12=="D"),sum(Column12=="E"),sum(Column12=="F"), sum(Column12=="G"),sum(Column12=="H"),sum(Column12=="I"),sum(Column12=="K"),sum(Column12=="L"), sum(Column12=="M"),sum(Column12=="N"),sum(Column12=="P"),sum(Column12=="Q"),sum(Column12=="R"), sum(Column12=="S"),sum(Column12=="T"),sum(Column12=="V"),sum(Column12=="W"),sum(Column12=="Y"), sum(Column12=="O")) slice13<-c(sum(Column13=="A"),sum(Column13=="C"),sum(Column13=="D"),sum(Column13=="E"),sum(Column13=="F"), sum(Column13=="G"),sum(Column13=="H"),sum(Column13=="I"),sum(Column13=="K"),sum(Column13=="L"), sum(Column13=="M"),sum(Column13=="N"),sum(Column13=="P"),sum(Column13=="Q"),sum(Column13=="R"), sum(Column13=="S"),sum(Column13=="T"),sum(Column13=="V"),sum(Column13=="W"),sum(Column13=="Y"), sum(Column13=="O")) slice14<-c(sum(Column14=="A"),sum(Column14=="C"),sum(Column14=="D"),sum(Column14=="E"),sum(Column14=="F"), sum(Column14=="G"),sum(Column14=="H"),sum(Column14=="I"),sum(Column14=="K"),sum(Column14=="L"), sum(Column14=="M"),sum(Column14=="N"),sum(Column14=="P"),sum(Column14=="Q"),sum(Column14=="R"), sum(Column14=="S"),sum(Column14=="T"),sum(Column14=="V"),sum(Column14=="W"),sum(Column14=="Y"), sum(Column14=="O")) slice15<-c(sum(Column15=="A"),sum(Column15=="C"),sum(Column15=="D"),sum(Column15=="E"),sum(Column15=="F"), sum(Column15=="G"),sum(Column15=="H"),sum(Column15=="I"),sum(Column15=="K"),sum(Column15=="L"), sum(Column15=="M"),sum(Column15=="N"),sum(Column15=="P"),sum(Column15=="Q"),sum(Column15=="R"), sum(Column15=="S"),sum(Column15=="T"),sum(Column15=="V"),sum(Column15=="W"),sum(Column15=="Y"), sum(Column15=="O")) ThisMatix<-cbind(slice1,slice2,slice3,slice4,slice5,slice6,slice7,slice8,slice9, slice10,slice11,slice12,slice13,slice14,slice15) ThisMatix<-ThisMatix AllSubBackFreq[1:21,1:15,z]<-ThisMatix } } theletters<-c("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y","O") # # AllSds<-apply(AllSubBackFreq, c(1,2), sd, na.rm = TRUE) # AllMeans<-apply(AllSubBackFreq, c(1,2), mean, na.rm = TRUE) #totalmotifs SumSBF<-apply(AllSubBackFreq, c(1,2), sum, na.rm=TRUE) # SumSBF<-SumSBF/totalmotifs ########## #NumeratedPeptides<-sapply(LetteredPeptides, function(y) gsub("A",A,y,perl = TRUE)) #ReferencePoints<-sapply(ReferencePoints,grepl, pattern = AAccessionNumbers, AllGeneNames,fixed = TRUE) ######### #nrow(substrates) PercentTable<-rbind(AllAs,CllCs,DllDs,EllEs,FllFs,GllGs,HllHs,IllIs,KllKs,LllLs,MllMs,NllNs,PllPs,QllQs,RllRs,SllSs,TllTs,VllVs,WllWs,YllYs,OllOs) #PercentTable<-PercentTable*100 fisheroddstable<-matrix(data = 1,nrow = 21,ncol = 15) fisherpvalstable<-matrix(data = 1,nrow = 21,ncol = 15) fisherpvalstableadjusted<-matrix(data = 1,nrow = 21,ncol = 15) for (rowas in 1:21) { for (colams in 1:15) { fishermatrix<-matrix(data=c(PercentTable[rowas,colams],nrow(substrates),SumSBF[rowas,colams],(totalmotifs-number_replaced)),nrow = 2) thetest<-fisher.test(x=fishermatrix) fisheroddstable[rowas,colams]<-thetest$estimate fisherpvalstable[rowas,colams]<-thetest$p.value fisherpvalstableadjusted[rowas,colams]<-p.adjust(p=thetest$p.value,method = "fdr",n=21*15) } } # FisherPowerTable<-matrix(data = 1,nrow = 21,ncol = 9) # for (rowas in 1:21) { # for (colams in 1:9) { # pro1<-PercentTable[rowas,colams]/nrow(substrates) # pro2<-SumSBF[rowas,colams]/totalmotifs # PowerFisherTest<-power.fisher.test(pro1,pro2,nrow(substrates),totalmotifs) # FisherPowerTable[rowas,colams]<-PowerFisherTest # } # } fisheroddstable<-cbind.data.frame(theletters,fisheroddstable) fisherpvalstable<-cbind.data.frame(theletters,fisherpvalstable) fisherpvalstableadjusted<-cbind.data.frame(theletters,fisherpvalstableadjusted) fisherupdown<-fisheroddstable for (x in 1:21) { for (y in 2:16) { theval<-1 testval<-fisheroddstable[x,y] testp<-fisherpvalstable[x,y] if (testp<.05){ theval<-testval } fisherupdown[x,y]<-theval } } write.table(x="Fisher Odds, only significant ones",file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) write.table(x=fisherupdown,file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) write.table(x="Fisher Odds",file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) write.table(x=fisheroddstable,file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) write.table(x="Fisher p.values",file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) write.table(x=fisherpvalstable,file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) write.table(x="Fisher p.values adjusted",file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) write.table(x=fisherpvalstableadjusted,file = SDtableAndPercentTable, append = TRUE,sep = ",",col.names = FALSE,row.names = FALSE) # write.table(x="Fisher Power",file = SDtableAndPercentTable, append = TRUE,sep = ",") # write.table(x=FisherPowerTable,file = SDtableAndPercentTable, append = TRUE,sep = ",") SetOfAAs<-c("Letter","A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y") SetOfAAs<-matrix(data = SetOfAAs,ncol = 1) numberofY<-as.numeric(SubstrateBackgroundFrequency$Number.of.Y) numberofY<-numberofY[!is.na(numberofY)] numberofPY<-as.numeric(SubstrateBackgroundFrequency$Number.of.pY) numberofPY<-numberofPY[!is.na(numberofPY)] NormalizationScore<-sum(numberofPY)/sum(numberofY) #positions<-matrix(data = NA, nrow=20,ncol = 9) # write.xlsx(SDtable,file=SDtableAndPercentTable, sheetName = "Standard Deviation Table",col.names = FALSE,row.names = FALSE,append = TRUE) # write.xlsx(PercentTable,file = SDtableAndPercentTable,sheetName = "Percent Table",col.names = FALSE,row.names = FALSE,append = TRUE) # write.xlsx(SelectivitySheet,file = SDtableAndPercentTable,sheetName = "Site Selectivity",col.names = FALSE,row.names = FALSE,append = TRUE) # write.xlsx(EPMtable,file=SDtableAndPercentTable,sheetName = "Endogenous Probability Matrix",col.names = FALSE,row.names = FALSE,append = TRUE) # write.xlsx(NormalizationScore,file = SDtableAndPercentTable,sheetName = "Normalization Score",col.names = FALSE,row.names = FALSE,append = TRUE) NormalizationScore<-c("Normalization Score",NormalizationScore) # write.table(x=c("SD Table"),file=SDtableAndPercentTable,append = TRUE,sep=",", row.names = FALSE, col.names = FALSE) # write.table(SDtable,file=SDtableAndPercentTable,append = TRUE,sep=",", row.names = FALSE, col.names = FALSE) # write.table(x=c("Percent Table"),file=SDtableAndPercentTable,append = TRUE,sep=",", row.names = FALSE, col.names = FALSE) # write.table(PercentTable,file=SDtableAndPercentTable, append = TRUE,sep=",",row.names = FALSE, col.names = FALSE) # write.table(SelectivitySheet,file = SiteSelectivityTable_EndogenousProbabilityMatrix_NormalizationScore_CharacterizationTable, append = TRUE,sep = ",",row.names = FALSE, col.names = FALSE) # write.table(x=c("Endogenous Probability Matrix"),file=SiteSelectivityTable_EndogenousProbabilityMatrix_NormalizationScore_CharacterizationTable,append = TRUE,sep=",", row.names = FALSE, col.names = FALSE) # write.table(EPMtable,file = SiteSelectivityTable_EndogenousProbabilityMatrix_NormalizationScore_CharacterizationTable, append = TRUE,sep = ",",row.names = FALSE, col.names = FALSE) write.table(NormalizationScore, file = SiteSelectivityTable_EndogenousProbabilityMatrix_NormalizationScore_CharacterizationTable, append = TRUE,sep = ",",row.names = FALSE, col.names = FALSE) ###################################### #change this WhichKinase<-"Btk" #change this #Positionm6<-c("E") -6 -4 1 5 6 score from -7-7 and -4-4 and the little MCC table things bareSDs<-fisherupdown[1:20,2:16] bareSDs[20,8]<-3 bareSDs[3:4,2]<-1 bareSDs[3:4,4]<-1 bareSDs[3:4,9]<-1 bareSDs[3:4,13:14]<-1 goodones<-bareSDs>1 bareSDs[20,8]<-1 allSDs<-fisheroddstable[1:20,2:16] allSDs[3:4,2]<-1 allSDs[3:4,4]<-1 allSDs[3:4,9]<-1 allSDs[3:4,13:14]<-1 #I'm trying to make it so it only goes 6 to 6 instead of 7 to 7, do this for speed reasons #what the above and below code does is this: fisherupdown is the "SD" table because it shows which positions and which amino acids the kinase likes and dislikes #so then I use the if and which statements below to automatically pick out WHICH amino acids the kinase likes at each position, if there are less than 2 there #I make sure there are at least 2. And I make sure that D and E are always represented as possibilities for the purposes of the terbium binding test A=1 C=2 D=3 E=4 F=5 G=6 H=7 I=8 K=9 L=10 M=11 N=12 P=13 Q=14 R=15 S=16 T=17 V=18 W=19 Y=20 aa_props <- c("A"=A, "C"=C, "D"=D, "E"=E, "F"=F,"G"=G,"H"=H,"I"=I,"K"=K,"L"=L,"M"=M,"N"=N,"P"=P,"Q"=Q,"R"=R, "S"=S,"T"=T,"V"=V,"W"=W,"Y"=Y,"xY"=Y,"O"=21) ThisKinTable<-fisheroddstable NegativeScores<-rep(NA,times=nrow(NegativeSubstrateList)) NegativeWeirdScores<-rep(NA,times=nrow(NegativeSubstrateList)) for (v in 1:nrow(NegativeSubstrateList)) { motif<-NegativeSubstrateList[v,2] motif<-unlist(strsplit(motif,"")) #if (length(motif)<9){print(v)}} # motif[1] <- sapply(motif[1], function (x) aa_props[x]) # motif[2] <- sapply(motif[2], function (x) aa_props[x]) # motif[3] <- sapply(motif[3], function (x) aa_props[x]) # motif[4] <- sapply(motif[4], function (x) aa_props[x]) # motif[5] <- sapply(motif[5], function (x) aa_props[x]) # motif[6] <- sapply(motif[6], function (x) aa_props[x]) # motif[7] <- sapply(motif[7], function (x) aa_props[x]) # motif[8] <- sapply(motif[8], function (x) aa_props[x]) # motif[9] <- sapply(motif[9], function (x) aa_props[x]) motif<- gsub(" ","O",motif) motif <- sapply(motif, function (x) aa_props[x]) Scoringpeptide<-motif Scoringpeptide<-Scoringpeptide ThisKinTableScore<-as.numeric(ThisKinTable[Scoringpeptide[1],2])*ThisKinTable[as.numeric(Scoringpeptide[2]),3]*ThisKinTable[as.numeric(Scoringpeptide[3]),4]* ThisKinTable[as.numeric(Scoringpeptide[4]),5]*ThisKinTable[as.numeric(Scoringpeptide[5]),6]*ThisKinTable[as.numeric(Scoringpeptide[6]),7]* ThisKinTable[as.numeric(Scoringpeptide[7]),8]* #ThisKinTable[as.numeric(Scoringpeptide[8]),10]* ThisKinTable[as.numeric(Scoringpeptide[9]),10]*ThisKinTable[as.numeric(Scoringpeptide[10]),11]*ThisKinTable[as.numeric(Scoringpeptide[11]),12]* ThisKinTable[as.numeric(Scoringpeptide[12]),13]*ThisKinTable[as.numeric(Scoringpeptide[13]),14]*ThisKinTable[as.numeric(Scoringpeptide[14]),15]* ThisKinTable[as.numeric(Scoringpeptide[15]),16] NegativeScores[v]<-ThisKinTableScore ThisKinTableScore<-(ThisKinTableScore/(ThisKinTableScore+1/as.numeric(NormalizationScore[2]))) NegativeWeirdScores[v]<-ThisKinTableScore*100 } negativesubstrates<-NegativeSubstrateList[,2] NegativeWithScores<-cbind(negativesubstrates,as.character(NegativeScores),as.character(NegativeWeirdScores)) #NEED TO HAVE THE NEGATIVE SUBSTRATES BE OUTPUTTED PositiveScores<-rep(NA,times=nrow(PositiveSubstrateList)) PositiveWeirdScores<-rep(NA,times=nrow(PositiveSubstrateList)) for (v in 1:nrow(PositiveSubstrateList)) { motif<-PositiveSubstrateList[v,4:18] motif<-unlist(motif) motif<- gsub("^$","O",motif) motif <- sapply(motif, function (x) aa_props[x]) Scoringpeptide<-motif Scoringpeptide<-Scoringpeptide ThisKinTableScore<-as.numeric(ThisKinTable[Scoringpeptide[1],2])*ThisKinTable[as.numeric(Scoringpeptide[2]),3]*ThisKinTable[as.numeric(Scoringpeptide[3]),4]* ThisKinTable[as.numeric(Scoringpeptide[4]),5]*ThisKinTable[as.numeric(Scoringpeptide[5]),6]*ThisKinTable[as.numeric(Scoringpeptide[6]),7]* ThisKinTable[as.numeric(Scoringpeptide[7]),8]* #ThisKinTable[as.numeric(Scoringpeptide[8]),10]* ThisKinTable[as.numeric(Scoringpeptide[9]),10]*ThisKinTable[as.numeric(Scoringpeptide[10]),11]*ThisKinTable[as.numeric(Scoringpeptide[11]),12]* ThisKinTable[as.numeric(Scoringpeptide[12]),13]*ThisKinTable[as.numeric(Scoringpeptide[13]),14]*ThisKinTable[as.numeric(Scoringpeptide[14]),15]* ThisKinTable[as.numeric(Scoringpeptide[15]),16] PositiveScores[v]<-ThisKinTableScore ThisKinTableScore<-(ThisKinTableScore/(ThisKinTableScore+1/as.numeric(NormalizationScore[2]))) PositiveWeirdScores[v]<-ThisKinTableScore*100 } positivesubstrates<-PositiveSubstrateList[,4:18] positivewithscores<-cbind.data.frame(positivesubstrates,PositiveScores,PositiveWeirdScores) SetOfAAs<-c("Letter","A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y") SumOfSigmaAAs<-c(1:15) for (i in 1:15){ SumOfSigmasValue<-0 for (j in 1:20){ value<-0 if (bareSDs[j,i]>1){ k<-j+1 value<-sum(substrates[,i]==SetOfAAs[k]) } SumOfSigmasValue<-SumOfSigmasValue+value } SumOfSigmaAAs[i]<-SumOfSigmasValue } # AAs1<-length(substrates[,1])-sum(substrates[,1]=="") # AAs2<-length(substrates[,2])-sum(substrates[,2]=="") # AAs3<-length(substrates[,3])-sum(substrates[,3]=="") # AAs4<-length(substrates[,4])-sum(substrates[,4]=="") # AAs5<-length(substrates[,5])-sum(substrates[,5]=="") # AAs6<-length(substrates[,6])-sum(substrates[,6]=="") # AAs7<-length(substrates[,7])-sum(substrates[,7]=="") # AAs8<-length(substrates[,8])-sum(substrates[,8]=="") # AAs9<-length(substrates[,9])-sum(substrates[,9]=="") # #AAsAtPositions<-c(AAs1,AAs2,AAs3,AAs4,AAs5,AAs6,AAs7,AAs8,AAs9) # AAsAtPositions<-c(length(substrates[,1]),length(substrates[,2]),length(substrates[,3]),length(substrates[,4]), # length(substrates[,5]),length(substrates[,6]),length(substrates[,7]),length(substrates[,8]), # length(substrates[,9])) # SumOfExpectedSigmaAAs<-c(1:9) # for (i in 1:15){ # ExpectedValue<-0 # for (j in 1:20){ # value<-0 # if (bareSDs[j,i]>1){ # value<-AllMeans[j] # } # ExpectedValue<-ExpectedValue+value # } # SumOfExpectedSigmaAAs[i]<-ExpectedValue*(length(substrates[,i])-sum(substrates[,i]%in% ""))/100 # } # # SelectivityRow<-SumOfSigmaAAs/SumOfExpectedSigmaAAs # SuperRow<-SelectivityRow #90% whatevernness # TPninetyone<-length(PositiveWeirdScores[PositiveWeirdScores>=0.91]) # Senseninetyone<-TPninetyone/nrow(positivesubstrates) # # TNninetyone<-length(NegativeWeirdScores[NegativeWeirdScores<91]) # Specninetyone<-TNninetyone/100 #create the MCC table threshold<-c(1:100,(1:9)/10,(1:9)/100,0,-.1) threshold<-threshold[order(threshold,decreasing = TRUE)] threshold Truepositives<-c(1:120) Falsenegatives<-c(1:120) Sensitivity<-c(1:120) TrueNegatives<-c(1:120) FalsePositives<-c(1:120) One_Minus_Specificity<-c(1:120) Accuracy<-c(1:120) MCC<-c(1:120) EER<-c(1:120) Precision<-c(1:120) F_One_Half<-c(1:120) F_One<-c(1:120) F_Two<-c(1:120) FalsePositiveRate<-c(1:120) #MAKE DAMN SURE THAT THE ACCESSION NUMBERS FOLLOW THE MOTIFS for (z in 1:120) { thres<-threshold[z] Truepositives[z]<-length(PositiveWeirdScores[PositiveWeirdScores>=(thres)]) Falsenegatives[z]<-nrow(positivesubstrates)-Truepositives[z] Sensitivity[z]<-Truepositives[z]/(Falsenegatives[z]+Truepositives[z]) TrueNegatives[z]<-length(NegativeWeirdScores[NegativeWeirdScores<(thres)]) # at thresh 100 this should be 0, because it is total minus true negatives FalsePositives[z]<-nrow(NegativeSubstrateList)-TrueNegatives[z] One_Minus_Specificity[z]<-1-(TrueNegatives[z]/(FalsePositives[z]+TrueNegatives[z])) Accuracy[z]<-100*(Truepositives[z]+TrueNegatives[z])/(Falsenegatives[z]+FalsePositives[z]+TrueNegatives[z]+Truepositives[z]) MCC[z]<-((Truepositives[z]*TrueNegatives[z])-(Falsenegatives[z]*FalsePositives[z]))/sqrt(round(round(Truepositives[z]+Falsenegatives[z])*round(TrueNegatives[z]+FalsePositives[z])*round(Truepositives[z]+FalsePositives[z])*round(TrueNegatives[z]+Falsenegatives[z]))) #EER[z]<-.01*(((1-(Sensitivity[z]))*(Truepositives[z]+Falsenegatives[z]))+(Specificity[z]*(1-(Truepositives[z]+Falsenegatives[z])))) EER[z]<-(FalsePositives[z]+Falsenegatives[z])/(Truepositives[z]+TrueNegatives[z]+FalsePositives[z]+Falsenegatives[z]) Precision[z]<-Truepositives[z]/(Truepositives[z]+FalsePositives[z]) F_One_Half[z]<-(1.5*Precision[z]*Sensitivity[z])/(.25*Precision[z]+Sensitivity[z]) F_One[z]<-(2*Precision[z]*Sensitivity[z])/(Precision[z]+Sensitivity[z]) F_Two[z]<-(5*Precision[z]*Sensitivity[z])/(4*Precision[z]+Sensitivity[z]) FalsePositiveRate[z]<-FalsePositives[z]/(TrueNegatives[z]+FalsePositives[z]) } Characterization<-cbind.data.frame(threshold,Truepositives,Falsenegatives,Sensitivity,TrueNegatives,FalsePositives,One_Minus_Specificity,Accuracy,MCC,EER,Precision,FalsePositiveRate,F_One_Half,F_One,F_Two) positiveheader<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,"RPMS","PMS") positivewithscores<-rbind.data.frame(positiveheader,positivewithscores) negativeheader<-c("Substrate","RPMS","PMS") colnames(NegativeWithScores)<-negativeheader # write.xlsx(NegativeWithScores,file = FILENAME, sheetName = "Negative Sequences Scored",col.names = TRUE,row.names = FALSE,append = TRUE) # write.xlsx(Characterization,file = FILENAME,sheetName = "Characterization Table",col.names = TRUE,row.names = FALSE,append = TRUE) # write.xlsx(RanksPeptides,file = FILENAME,sheetName = "Ranked Generated Peptides",col.names = FALSE,row.names = FALSE,append = TRUE) # write.xlsx(positivewithscores,file = FILENAME, sheetName = "Positive Sequences Scored",col.names = FALSE,row.names = FALSE,append = TRUE) write.table(x=c("Characterzation Table"),file = FILENAME2, col.names = FALSE,row.names = FALSE, append = TRUE,sep = ",") write.table(Characterization,file = FILENAME2, col.names = TRUE,row.names = FALSE, append = TRUE,sep = ",") #write.table(RanksPeptides,file = FILENAME3,append = TRUE,row.names = FALSE,col.names = TRUE,sep = ",") options(warn = oldw)