Mercurial > repos > jfb > negative_motif_finder_7_7
comparison NMF/NMF.R @ 1:a098e1274f63 draft
Uploaded
author | jfb |
---|---|
date | Wed, 28 Feb 2018 14:09:56 -0500 |
parents | dd301fc4b54e |
children |
comparison
equal
deleted
inserted
replaced
0:dd301fc4b54e | 1:a098e1274f63 |
---|---|
1 NAMEOFOUTPUTFILE<-"output1.csv" | 1 NAMEOFOUTPUTFILE<-"output1.csv" |
2 #this is the name of the file you will create | |
3 | |
4 | |
5 | 2 |
6 SuperAwesometrial <- read.delim2("input1.tabular", header=FALSE) | 3 SuperAwesometrial <- read.delim2("input1.tabular", header=FALSE) |
7 #once you've used the other script to turn the FASFA into a CSV, copypaste the filepath and name | 4 #once you've used the other script to turn the FASFA into a CSV, copypaste the filepath and name |
8 #of the csv into this line between the quote marks. | 5 #of the csv into this line between the quote marks. |
9 | 6 |
10 SBF<-read.csv("input3.csv", stringsAsFactors = FALSE) | 7 SBF<-read.csv("input3.csv", stringsAsFactors = FALSE, header = FALSE) |
11 | 8 SBF<-t(SBF) |
12 | 9 |
13 PositiveMotifs <- read.csv("input2.csv", stringsAsFactors=FALSE) | 10 PositiveMotifs <- read.csv("input2.csv", stringsAsFactors=FALSE) |
14 #because of R reasons, it is required that the motifs in this file have blank cells instead of spaces where there is no letter in | 11 #because of R reasons, it is required that the motifs in this file have blank cells instead of spaces where there is no letter in |
15 #the motif | 12 #the motif |
13 | |
14 YsToim<-rep("xY",times=nrow(PositiveMotifs)) | |
15 PositiveMotifs[,11]<-YsToim | |
16 | |
17 | |
16 | 18 |
17 ################################################################################################################################ | 19 ################################################################################################################################ |
18 #I have to paste them, then split and unlist them, then find the x and paste again | 20 #I have to paste them, then split and unlist them, then find the x and paste again |
19 Positive9Letters<-PositiveMotifs[,4:18] | 21 Positive9Letters<-PositiveMotifs[,4:18] |
20 #head(Positive9Letters) | 22 #head(Positive9Letters) |
21 PositiveTrueMotifs<-c() | 23 PositiveTrueMotifs<-c() |
22 | 24 |
23 AccessionNumbers<-SBF[,1] | 25 AccessionNumbers<-as.character(SBF[2:nrow(SBF),1]) |
26 AccessionNumbers<-AccessionNumbers[!is.na(AccessionNumbers)] | |
24 ALLPOSSIBLE<-SuperAwesometrial[,1] | 27 ALLPOSSIBLE<-SuperAwesometrial[,1] |
25 ALLPOSSIBLE<-as.character(ALLPOSSIBLE) | 28 ALLPOSSIBLE<-as.character(ALLPOSSIBLE) |
26 ################################################################################################################################ | 29 ################################################################################################################################ |
27 | 30 |
28 for (q in 1:nrow(Positive9Letters)) { | 31 for (q in 1:nrow(Positive9Letters)) { |
57 ################################################################################################################################ | 60 ################################################################################################################################ |
58 | 61 |
59 #TrueMotifNums<-which(ALLPOSSIBLE %in% AccessionNumbers) | 62 #TrueMotifNums<-which(ALLPOSSIBLE %in% AccessionNumbers) |
60 #fihlodeANs<-c() | 63 #fihlodeANs<-c() |
61 for (q in 1:length(AccessionNumbers)) { | 64 for (q in 1:length(AccessionNumbers)) { |
62 patterno<-AccessionNumbers[q] | 65 patterno<-as.character(AccessionNumbers[q]) |
63 location<-sapply(ALLPOSSIBLE, grepl, pattern=patterno, fixed=TRUE) | 66 location<-sapply(ALLPOSSIBLE, grepl, pattern=patterno, fixed=TRUE) |
64 if (sum(location)>0){ | 67 if (sum(location)>0){ |
65 whereisit<-which(location %in% TRUE) | 68 whereisit<-which(location %in% TRUE) |
66 for (u in 1:length(whereisit)) { | 69 for (u in 1:length(whereisit)) { |
67 i<-whereisit[u] | 70 i<-whereisit[u] |