Mercurial > repos > jfb > negative_motif_finder_7_7
view NMF/NMF-working-2-5-20.R @ 4:220d4359ec9b draft
Uploaded
author | jfb |
---|---|
date | Thu, 06 Feb 2020 14:20:36 -0500 |
parents | |
children |
line wrap: on
line source
NAMEOFOUTPUTFILE<-"output1.csv" SuperAwesometrial <- read.delim2("input1.tabular", header=FALSE) #once you've used the other script to turn the FASFA into a CSV, copypaste the filepath and name #of the csv into this line between the quote marks. SBF<-read.csv("input3.csv", stringsAsFactors = FALSE, header = FALSE) SBF<-t(SBF) PositiveMotifs <- read.csv("input2.csv", stringsAsFactors=FALSE) #because of R reasons, it is required that the motifs in this file have blank cells instead of spaces where there is no letter in #the motif YsToim<-rep("xY",times=nrow(PositiveMotifs)) PositiveMotifs[,11]<-YsToim ################################################################################################################################ #I have to paste them, then split and unlist them, then find the x and paste again Positive9Letters<-PositiveMotifs[,4:18] #head(Positive9Letters) PositiveTrueMotifs<-c() AccessionNumbers<-as.character(SBF[2:nrow(SBF),1]) AccessionNumbers<-AccessionNumbers[!is.na(AccessionNumbers)] ALLPOSSIBLE<-SuperAwesometrial[,1] ALLPOSSIBLE<-as.character(ALLPOSSIBLE) ################################################################################################################################ for (q in 1:nrow(Positive9Letters)) { LeftJust<-0 RightJust<-0 motifmotif<-Positive9Letters[q,] motifmotif<-paste(motifmotif, collapse = "",sep = "") motifmotif<-unlist(strsplit(motifmotif, split = "")) position <- match(x = "x", table = motifmotif) LeftJust<-position-1 RightJust<-length(motifmotif)-position-1 LeftSpaces<-rep(x=" ", times=(7-LeftJust)) RightSpaces<-rep(x=" ", times=(7-RightJust)) motifmotif<-motifmotif[!motifmotif %in% c("x")] motifmotif<-c(LeftSpaces,motifmotif,RightSpaces) motifmotif<-paste(motifmotif, collapse = "",sep = "") PositiveTrueMotifs<-c(PositiveTrueMotifs,motifmotif) } ################################################################################################################################ allmotifs<-matrix(data=rep("Motifs", times= 1000000),ncol = 1) thenames<-matrix(data=rep("AccessionNumbers", times= 1000000),ncol = 1) ################################################################################################################################ ################################################################################################################################ #I need to preallocate these vectors. I will find out how many y's there are total and then make the vector that many long #Or what I need is two separate loops. First loop finds all the accession number positions that Grep to the FASTA (which is called ALLPOSSIBLE) #then take only those AAs from the fasta and count their y's, preallocate the vector for part 2 to that many y's #those accessions and such as saved in a vector... this seems like it would be no faster actually #then_that_are <- which(AccessionNumbers %in% ALLPOSSIBLE) MotifNumber<-2 #TrueMotifNums<-which(ALLPOSSIBLE %in% AccessionNumbers) #fihlodeANs<-c() locations<-unique(grep(paste(AccessionNumbers,collapse="|"), ALLPOSSIBLE)) if (sum(locations)>0){ whereisit<-locations for (u in 1:length(whereisit)) { i<-whereisit[u] name<-c() data<-c() name<-as.character(SuperAwesometrial[i,1]) #the name of each protein is the first column name<-sub(x=name, pattern=",", replacement="") #the names may contain commas, remove them data<-as.character(SuperAwesometrial[i,3]) #the amino acids are stored in the third column data<-strsplit(data,"") #split them into their component letters data<-unlist(data) #turn them into a vector motif<-c() #this part below is where I can speed things up The_Ys<-data=="Y" #find any Y in the protein if (sum(The_Ys>0)){ #if there is at least one Y Where_are_they<-which(The_Ys %in% TRUE) for (z in 1:length(Where_are_they)) { #then for every Y, make a motif j<-Where_are_they[z] #for (j in 1:length(data)){ #if ("Y" %in% data[j]){ #if there is a Y aka Tyrosine in the data #allmotifs=rbind(allmotifs,data[(i-4):(i+4)]) a <- j-7 a<-ifelse(a<1, a <- 1, a <- a) # if (a<1){ # a <- 1 # } b<-j+7 b<-ifelse(b>length(data), b <- length(data), b <- b) # if (b>length(data)){ # b<-length(data) # } #take the motif that is +/- 4 from that Y, sanity checks so that values are never off the grid from the protein LeftSide<-7-(j-a) RightSide<-7-(b-j) #how is the motif justified? Does it have exactly 4 letters to the left/right, or does it not? leftspaces<-rep(" ",times=LeftSide) rightspaces<-rep(" ",times=RightSide) #add blank spaces if the motif has less than 4 letters to the left/right motif<-(data[(a):(b)]) motif<-c(leftspaces,motif,rightspaces) #save that motif, which is the Y and +/- 4 amino acids, including truncation # lens<-c(lens,length(motif)) # leni<-c(leni,i) # lenj<-c(lenj,j) motif<-paste(motif, sep="", collapse="") #the 4 amino acids, put them back together into a single string motif<-matrix(data=c(motif),nrow = 1) namesss<-matrix(data=c(name),nrow = 1) #keep this motif and separately keep the name of the protein it came from # allmotifs<-rbind(allmotifs,motif) # thenames<-rbind(thenames,namesss) allmotifs[MotifNumber,1]<-motif thenames[MotifNumber,1]<-namesss MotifNumber<-MotifNumber+1 #add names and motifs to a growing list # write.table(motif, file="TRIALTIALRIAALSKFDJSD.csv", quote=FALSE, sep=",", # row.names=FALSE,col.names = FALSE, na="", append=TRUE) #and then write it into a csv, the sep is needed so that the two pieces of the data frame are separated #append has 1to equal true because this thing will loop around many times adding more and more data points #you must create a new filename/filepath with each new data you run } } } } ################################################################################################################################ ################################################################################################################################ ################################################################################################################################ # for (i in 1:nrow(SuperAwesometrial)){ # # } names(allmotifs)<-thenames truemotifs<-allmotifs[!duplicated(allmotifs)] #truenames<-thenames[!duplicated(thenames)] #remove duplicates from the motifs and names #make the motifs and names into matrices truemotifs<-truemotifs[!truemotifs %in% PositiveTrueMotifs] outputfile<-cbind(names(truemotifs),truemotifs) outputfile <- gsub(",","",outputfile) write.table(outputfile, file=NAMEOFOUTPUTFILE, quote=FALSE, sep=",", row.names=FALSE,col.names = FALSE, na="", append=TRUE)