comparison mixmodel.xml @ 0:1422de181204 draft

planemo upload for repository https://github.com/workflow4metabolomics/mixmodel4repeated_measures commit 6ea32b3182383c19e5333201d2385a61d8da3d50
author jfrancoismartin
date Wed, 10 Oct 2018 05:18:42 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:1422de181204
1 <tool id="mixmodel" name="mixmodel" version="1.0.0">
2 <description>ANOVA for repeated measures statistics</description>
3
4 <requirements>
5 <requirement type="package" version="1.1_4">r-batch</requirement>
6 <requirement type="package" version="1.1_13">r-lme4</requirement>
7 <requirement type="package" version="3.0_1">r-lmertest</requirement>
8 <requirement type="package" version="2.34.0">bioconductor-multtest</requirement>
9 <requirement type="package" version="2.3">r-gridextra</requirement>
10 </requirements>
11
12 <stdio>
13 <exit_code range="1:" level="fatal" />
14 </stdio>
15
16 <command><![CDATA[
17 Rscript $__tool_directory__/mixmodel_wrapper.R
18
19 dataMatrix_in "$dataMatrix_in"
20 sampleMetadata_in "$sampleMetadata_in"
21 variableMetadata_in "$variableMetadata_in"
22
23 fixfact "$fixfact"
24 time "$time"
25 subject "$subject"
26 adjC "$adjC"
27 trf "$trf"
28 thrN "$thrN"
29 diaR "$diaR"
30
31 variableMetadata_out "$variableMetadata_out"
32 out_graph_pdf "$out_graph_pdf"
33 out_estim_pdf "$out_estim_pdf"
34 information "$information"
35
36 ]]></command>
37
38 <inputs>
39 <param name="dataMatrix_in" label="Data matrix file" type="data" format="tabular" help="variable x sample, decimal: '.', missing: NA, mode: numerical, sep: tabular" />
40 <param name="sampleMetadata_in" label="Sample metadata file" type="data" format="tabular" help="sample x metadata, decimal: '.', missing: NA, mode: character and numerical, sep: tabular" />
41 <param name="variableMetadata_in" label="Variable metadata file" type="data" format="tabular" help="variable x metadata, decimal: '.', missing: NA, mode: character and numerical, sep: tabular" />
42 <param name="fixfact" label="Fixed Factor of interest" type="text" help="Name of the column of the sample metadata table corresponding to the fixed factor"/>
43 <param name="time" label="Repeated factor (time)" type="text" help="Name of the column of the sample metadata table corresponding to the repeated factor"/>
44 <param name="subject" label="Subject factor" type="text" help="Name of the column of the sample metadata table corresponding to the subject factor"/>
45 <param name="adjC" label="Method for multiple testing correction" type="select" help="">
46 <option value="fdr">fdr</option>
47 <option value="BH">BH</option>
48 <option value="bonferroni">bonferroni</option>
49 <option value="BY">BY</option>
50 <option value="hochberg">hochberg</option>
51 <option value="holm">holm</option>
52 <option value="hommel">hommel</option>
53 <option value="none">none</option>
54 </param>
55 <param name="trf" label="Log transform of raw data" type="select" help="Transformation of raw data">
56 <option value="none">none</option>
57 <option value="log10">log10</option>
58 <option value="log2">log2</option>
59 </param>
60 <param name="thrN" type="float" value="0.05" label="(Corrected) p-value significance threshold" help="Must be between 0 and 1"/>
61 <param name="diaR" label="Perform diagnostic of the residuals" type="select"
62 help=" Used to assess the quality of models considering distribution of residuals ">
63 <option value="yes">yes</option>
64 <option value="no"></option>
65 </param>
66
67 </inputs>
68
69 <outputs>
70 <data name="variableMetadata_out" label="${tool.name}_${variableMetadata_in.name}" format="tabular"/>
71 <data name="information" label="${tool.name}_information.txt" format="txt"/>
72 <data name="out_graph_pdf" label="${tool.name}_diagResiduals" format="pdf"/>
73 <data name="out_estim_pdf" label="${tool.name}_Estimates" format="pdf"/>
74
75 </outputs>
76
77 <tests>
78 <test>
79 <param name="dataMatrix_in" value="demo1_matrix.txt" />
80 <param name="sampleMetadata_in" value="demo1_Samples.txt" />
81 <param name="variableMetadata_in" value="demo1_variables.txt" />
82 <param name="fixfact" value="treatment" />
83 <param name="time" value="time" />
84 <param name="subject" value="idsujet" />
85 <output name="variableMetadata_out" value="mixmodel_demo1_variables.txt" />
86 </test>
87 </tests>
88
89 <help><![CDATA[
90 .. class:: infomark
91
92 **Tool update: See the 'NEWS' section at the bottom of the page**
93
94 .. class:: infomark
95
96 **Authors** Natacha Lenuzza (natacha.lenuzza@cea.fr) and Jean-Francois Martin (jean-francois.martin@inra.fr) wrote this wrapper of R repeated measure anova statistical tests. MetaboHUB: The French National Infrastructure for Metabolomics and Fluxomics (http://www.metabohub.fr/en)
97
98 .. class:: infomark
99
100 **Please cite**
101
102 R Core Team (2013). R: A language and Environment for Statistical Computing. http://www.r-project.org
103
104 .. class:: infomark
105
106 **References**
107 Kuznetsova A. Brockhoff PB. and Christensen RHB (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), pp. 1–26. doi: 10.18637/jss.v082.i13.
108 Benjamini Y. and Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach for multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57:289-300.
109
110
111 =============
112 Mixed models
113 =============
114
115 -----------
116 Description
117 -----------
118
119 The module performs analysis of variance for repeated measures using mixed model
120
121
122 -----------
123 Input files
124 -----------
125
126 +---------------------------+------------+
127 | File | Format |
128 +===========================+============+
129 | 1 : Data matrix | tabular |
130 +---------------------------+------------+
131 | 2 : Sample metadatx | tabular |
132 +---------------------------+------------+
133 | 3 : Variable metadata | tabular |
134 +---------------------------+------------+
135
136
137 ----------
138 Parameters
139 ----------
140
141 Data matrix file
142 | variable x sample **dataMatrix** tabular separated file of the numeric data matrix, with . as decimal, and NA for missing values; the table must not contain metadata apart from row and column names; the row and column names must be identical to the rownames of the sample and variable metadata, respectively (see below)
143 |
144
145 Sample metadata file
146 | sample x metadata **sampleMetadata** tabular separated file of the numeric and/or character sample metadata, with . as decimal and NA for missing values
147 |
148
149 Variable metadata file
150 | variable x metadata **variableMetadata** tabular separated file of the numeric and/or character variable metadata, with . as decimal and NA for missing values
151 |
152
153
154 Treatment
155 | Name of the fixed factor in the sample metadata file
156 |
157
158 Time
159 | Name of the repeated (time) factor in the sample metadata file
160 |
161
162 Subject
163 | Name of the subject (on which the repeated measurement id done) in the sample metadata file
164 |
165
166 Method for multiple testing correction
167 | The 7 methods implemented in the 'p.adjust' R function are available and documented as follows:
168 | "The adjustment methods include the Bonferroni correction ("bonferroni") in which the p-values are multiplied by the number of comparisons. Less conservative corrections are also included by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988) ("hommel"), Benjamini and Hochberg (1995) ("BH" or its alias "fdr"), and Benjamini and Yekutieli (2001) ("BY"), respectively. A pass-through option ("none") is also included. The set of methods are contained in the p.adjust.methods vector for the benefit of methods that need to have the method as an option and pass it on to p.adjust. The first four methods are designed to give strong control of the family-wise error rate. There seems no reason to use the unmodified Bonferroni correction because it is dominated by Holm's method, which is also valid under arbitrary assumptions. Hochberg's and Hommel's methods are valid when the hypothesis tests are independent or when they are non-negatively associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel's method is more powerful than Hochberg's, but the difference is usually small and the Hochberg p-values are faster to compute. The "BH" (aka "fdr") and "BY" method of Benjamini, Hochberg, and Yekutieli control the false discovery rate, the expected proportion of false discoveries amongst the rejected hypotheses. The false discovery rate is a less stringent condition than the family-wise error rate, so these methods are more powerful than the others."
169
170
171 (Corrected) p-value significance threshold
172 |
173 |
174
175 ------------
176 Output files
177 ------------
178
179 variableMetadata_out.tabular
180 | **variableMetadata** file identical to the file given as argument plus
181 | pvalue of Shapiro normality test of the residuals
182 | pvalues of the main effects and interaction
183 | PostHoc test with difference between levels and pvalues of these difference
184 |
185
186 mixedmodel_diagResiduals
187 | if Perform diagnostic of the residuals" is set to yes(default) a pdf file is created with a graphical
188 | representation of differences among levels of factors with a color code for significance and an error bar
189 | Then a serie of graphics are output in order to assess the distribution of residuals to check the adjustment.
190
191 information.txt
192 | File with all messages and warnings generated during the computation
193 | The list of variables with name and a tag if it is significant for at least fixed or repeated factor.
194
195
196 ]]></help>
197
198 <citations>
199 <citation type="doi">10.18637/jss.v082.i13.</citation>
200 <citation type="bibtex">@ARTICLE{fisher,
201 author = {Benjamini Y. and Hochberg Y.,
202 title = {Controlling the false discovery rate: a practical and powerful approach for multiple testing. Journal of the Royal Statistical Society},
203 journal = {Series B (Methodological)},
204 year = {1995},
205 volume = {57},
206 pages = {289-300}
207 }</citation>
208 <citation type="doi">10.1093/bioinformatics/btu813</citation>
209 </citations>
210
211 </tool>