Mercurial > repos > jjjjia > cpo_prediction
diff cpo_galaxy_tree.py @ 18:596bf8a792de draft
planemo upload
author | jjjjia |
---|---|
date | Tue, 28 Aug 2018 15:15:09 -0400 |
parents | a14b12a71a53 |
children | e5a7da2239af |
line wrap: on
line diff
--- a/cpo_galaxy_tree.py Mon Aug 27 19:58:24 2018 -0400 +++ b/cpo_galaxy_tree.py Tue Aug 28 15:15:09 2018 -0400 @@ -39,18 +39,53 @@ #parses some parameters parser = optparse.OptionParser("Usage: %prog [options] arg1 arg2 ...") -parser.add_option("-t", "--tree", dest="treePath", type="string", default="./pipelineTest/tree.txt", help="identifier of the isolate") -parser.add_option("-d", "--distance", dest="distancePath", type="string", default="./pipelineTest/distance.tab", help="absolute file path forward read (R1)") -parser.add_option("-m", "--metadata", dest="metadataPath", type="string", default="./pipelineTest/metadata.tsv",help="absolute file path to reverse read (R2)") +parser.add_option("-t", "--tree", dest="treePath", type="string", default="./pipelineTest/tree.txt", help="absolute file path to phylip tree") +parser.add_option("-d", "--distance", dest="distancePath", type="string", default="./pipelineTest/distance.tab", help="absolute file path to distance matrix") +parser.add_option("-m", "--metadata", dest="metadataPath", type="string", default="./pipelineTest/metadata.tsv",help="absolute file path to metadata file") +parser.add_option("-o", "--output_file", dest="outputFile", type="string", default="tree.png", help="Output graphics file. Use ending 'png', 'pdf' or 'svg' to specify file format.") + +# sensitive data adder +parser.add_option("-p", "--sensitive_data", dest="sensitivePath", type="string", default="", help="Spreadsheet (CSV) with sensitive metadata") +parser.add_option("-c", "--sensitive_cols", dest="sensitiveCols", type="string", default="", help="CSV list of column names from sensitive metadata spreadsheet to use as labels on dendrogram") +parser.add_option("-b", "--bcid_column", dest="bcidCol", type="string", default="BCID", help="Column name of BCID in sensitive metadata file") +parser.add_option("-n", "--missing_value", dest="naValue", type="string", default="NA", help="Value to write for missing data.") + (options,args) = parser.parse_args() treePath = str(options.treePath).lstrip().rstrip() distancePath = str(options.distancePath).lstrip().rstrip() metadataPath = str(options.metadataPath).lstrip().rstrip() +sensitivePath = str(options.sensitivePath).lstrip().rstrip() +sensitiveCols = str(options.sensitiveCols).lstrip().rstrip() +outputFile = str(options.outputFile).lstrip().rstrip() +bcidCol = str( str(options.bcidCol).lstrip().rstrip() ) +naValue = str( str(options.naValue).lstrip().rstrip() ) + #region result objects #define some objects to store values from results #//TODO this is not the proper way of get/set private object variables. every value has manually assigned defaults intead of specified in init(). Also, use property(def getVar, def setVar). + +class SensitiveMetadata(object): + def __init__(self): + x = pandas.read_csv( sensitivePath ) + col_names = [ s for s in sensitiveCols.split(',')] # convert to 0 offset + if not bcidCol in col_names: + col_names.append( bcidCol ) + all_cols = [ str(col) for col in x.columns ] + col_idxs = [ all_cols.index(col) for col in col_names ] + self.sensitive_data = x.iloc[:, col_idxs] + def get_columns(self): + cols = [ str(x) for x in self.sensitive_data.columns ] + return cols + def get_value( self, bcid, column_name ): # might be nice to get them all in single call via an input list of bcids ... for later + bcids= list( self.sensitive_data.loc[:, bcidCol ] ) # get the list of all BCIDs in sensitive metadata + if not bcid in bcids: + return naValue + else: + row_idx = bcids.index( bcid ) # lookup the row for this BCID + return self.sensitive_data.loc[ row_idx, column_name ] # return the one value based on the column (col_idx) and this row + class workflowResult(object): def __init__(self): self.new = False @@ -60,6 +95,7 @@ self.SequenceType = "?" self.MLSTScheme = "?" self.CarbapenemResistanceGenes ="?" + self.plasmidBestMatch ="?" self.OtherAMRGenes="?" self.TotalPlasmids = -1 self.plasmids = [] @@ -145,6 +181,7 @@ _results.CarbapenemResistanceGenes = (str(r.loc[r.index[i], 'Carbapenem Resistance Genes'])) _results.OtherAMRGenes = (str(r.loc[r.index[i], 'Other AMR Genes'])) _results.TotalPlasmids = int(r.loc[r.index[i], 'Total Plasmids']) + _results.plasmidBestMatch = str(r.loc[r.index[i], 'Plasmid Best Match']) for j in range(0,_results.TotalPlasmids): _plasmid = plasmidObj() _plasmid.PlasmidsID =(((str(r.loc[r.index[i], 'Plasmids ID'])).split(";"))[j]) @@ -163,6 +200,9 @@ #endregion def Main(): + if len(sensitivePath)>0: + sensitive_meta_data = SensitiveMetadata() + metadata = ParseWorkflowResults(metadataPath) distance = read(distancePath) treeFile = "".join(read(treePath)) @@ -212,6 +252,12 @@ if (n.is_leaf() and n.name == "Reference"): #if its the reference branch, populate the faces with column headers index = 0 + + if len(sensitivePath)>0: #sensitive metadat @ chris + for sensitive_data_column in sensitive_meta_data.get_columns(): + (t&"Reference").add_face(addFace(sensitive_data_column), index, "aligned") + index = index + 1 + (t&"Reference").add_face(addFace("SampleID"), index, "aligned") index = index + 1 (t&"Reference").add_face(addFace("New?"), index, "aligned") @@ -225,12 +271,28 @@ index = index + 1 (t&"Reference").add_face(addFace("Carbapenamases"), index, "aligned") index = index + 1 + (t&"Reference").add_face(addFace("Plasmid Best Match"), index, "aligned") + index = index + 1 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds the distance matrix (t&"Reference").add_face(addFace(distanceDict[list(distanceDict.keys())[0]][i]), index + i, "aligned") index = index + len(distanceDict[list(distanceDict.keys())[0]]) elif (n.is_leaf() and not n.name == "Reference"): #not reference branches, populate with metadata index = 0 + + if len(sensitivePath)>0: #sensitive metadata @ chris + # pushing in sensitive data + for sensitive_data_column in sensitive_meta_data.get_columns(): + # tree uses bcids like BC18A021A_S12 + # while sens meta-data uses BC18A021A + # trim the "_S.*" if present + bcid = str(mData.ID) + if bcid.find( "_S" ) != -1: + bcid = bcid[ 0:bcid.find( "_S" ) ] + sens_col_val = sensitive_meta_data.get_value(bcid=bcid, column_name=sensitive_data_column ) + n.add_face(addFace(sens_col_val), index, "aligned") + index = index + 1 + if (n.name.replace(".fa","") in metadata.keys()): mData = metadata[n.name.replace(".fa","")] else: @@ -262,11 +324,13 @@ index = index + 1 n.add_face(addFace(mData.CarbapenemResistanceGenes), index, "aligned") index = index + 1 + n.add_face(addFace(mData.plasmidBestMatch), index, "aligned") + index = index + 1 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds distance matrix if (n.name in distanceDict): #make sure the column is in the distance matrice n.add_face(addFace(list(distanceDict[n.name])[i]), index + i, "aligned") - t.render("./tree.pdf", w=5000,units="mm", tree_style=ts) #save it as a png. or an phyloxml + t.render(outputFile, w=5000,units="mm", tree_style=ts) #save it as a png, pdf, svg or an phyloxml #endregion #endregion