Mercurial > repos > jjjjia > cpo_prediction
diff galaxy_prediction.py.2 @ 0:917a05a03ac9 draft
Uploaded
author | jjjjia |
---|---|
date | Tue, 14 Aug 2018 17:18:49 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/galaxy_prediction.py.2 Tue Aug 14 17:18:49 2018 -0400 @@ -0,0 +1,609 @@ +#!/home/jjjjia/.conda/envs/py36/bin/python + +#$ -S /home/jjjjia/.conda/envs/py36/bin/python +#$ -V # Pass environment variables to the job +#$ -N CPO_pipeline # Replace with a more specific job name +#$ -wd /home/jjjjia/testCases # Use the current working dir +#$ -pe smp 8 # Parallel Environment (how many cores) +#$ -l h_vmem=11G # Memory (RAM) allocation *per core* +#$ -e ./logs/$JOB_ID.err +#$ -o ./logs/$JOB_ID.log +#$ -m ea +#$ -M bja20@sfu.ca + +#./prediction.py -i ~/testCases/cpoResults/contigs/BC11-Kpn005_S2.fa -m ~/testCases/predictionResultsQsubTest/predictions/BC11-Kpn005_S2.mlst -c ~/testCases/predictionResultsQsubTest/predictions/BC11-Kpn005_S2.recon/contig_report.txt -f ~/testCases/predictionResultsQsubTest/predictions/BC11-Kpn005_S2.recon/mobtyper_aggregate_report.txt -a ~/testCases/predictionResultsQsubTest/predictions/BC11-Kpn005_S2.cp -r ~/testCases/predictionResultsQsubTest/predictions/BC11-Kpn005_S2.rgi.txt -e "Klebsiella" +import subprocess +import pandas +import optparse +import os +import datetime +import sys +import time +import urllib.request +import gzip +import collections +import json +import numpy + + +debug = False #debug skips the shell scripts and also dump out a ton of debugging messages + +if not debug: + #parses some parameters + parser = optparse.OptionParser("Usage: %prog [options] arg1 arg2 ...") + #required + #MLSTHIT, mobsuite, resfinder, rgi, mlstscheme + parser.add_option("-i", "--id", dest="id", type="string", help="identifier of the isolate") + parser.add_option("-m", "--mlst", dest="mlst", type="string", help="absolute file path to mlst result") + parser.add_option("-c", "--mobfinderContig", dest="mobfinderContig", type="string", help="absolute path to mobfinder aggregate result") + parser.add_option("-f", "--mobfinderAggregate", dest="mobfinderAggregate", type="string", help="absolute path to mobfinder plasmid results") + parser.add_option("-a", "--abricate", dest="abricate", type="string", help="absolute path to abricate results") + parser.add_option("-r", "--rgi", dest="rgi", type="string", help="absolute path to rgi results") + parser.add_option("-e", "--expected", dest="expectedSpecies", default="NA/NA/NA", type="string", help="expected species of the isolate") + parser.add_option("-s", "--mlst-scheme", dest="mlstScheme", default= "./scheme_species_map.tab", type="string", help="absolute file path to mlst scheme") + + #parallelization, useless, these are hard coded to 8cores/64G RAM + #parser.add_option("-t", "--threads", dest="threads", default=8, type="int", help="number of cpu to use") + #parser.add_option("-p", "--memory", dest="memory", default=64, type="int", help="memory to use in GB") + + (options,args) = parser.parse_args() + #if len(args) != 8: + #parser.error("incorrect number of arguments, all 7 is required") + curDir = os.getcwd() + ID = str(options.id).lstrip().rstrip() + mlst = str(options.mlst).lstrip().rstrip() + mobfindercontig = str(options.mobfinderContig).lstrip().rstrip() + mobfinderaggregate = str(options.mobfinderAggregate).lstrip().rstrip() + abricate = str(options.abricate).lstrip().rstrip() + rgi = str(options.rgi).lstrip().rstrip() + expectedSpecies = str(options.expectedSpecies).lstrip().rstrip() + mlstScheme = str(options.mlstScheme).lstrip().rstrip() + outputDir = "./" + print(mlst) + print(mobfindercontig) + print(mobfinderaggregate) + print(abricate) + print(rgi) + print(expectedSpecies) + print(mlstScheme) +else: + curDir = os.getcwd() + ID = "BC11" + mlst = "D:\OneDrive\ProjectCDC\ProjectCDCInPython\ProjectCDCInPython\pipelineTest\predictions\BC11-Kpn005_S2.mlst" + mobfindercontig = "D:\OneDrive\ProjectCDC\ProjectCDCInPython\ProjectCDCInPython\pipelineTest\predictions\BC11-Kpn005_S2.recon\contig_report.txt" + mobfinderaggregate = "D:\OneDrive\ProjectCDC\ProjectCDCInPython\ProjectCDCInPython\pipelineTest\predictions\BC11-Kpn005_S2.recon\mobtyper_aggregate_report.txt" + abricate = "D:\OneDrive\ProjectCDC\ProjectCDCInPython\ProjectCDCInPython\pipelineTest\predictions\BC11-Kpn005_S2.cp" + rgi = "D:\OneDrive\ProjectCDC\ProjectCDCInPython\ProjectCDCInPython\pipelineTest\predictions\BC11-Kpn005_S2.rgi.txt" + expectedSpecies = "Escherichia coli" + mlstScheme = "D:\OneDrive\ProjectCDC\ProjectCDCInPython\ProjectCDCInPython\pipelineTest\scheme_species_map.tab" + outputDir = "./" + +#region result objects +#define some objects to store values from results +#//TODO this is not the proper way of get/set private object variables. every value has manually assigned defaults intead of specified in init(). Also, use property(def getVar, def setVar). +class starFinders(object): + def __init__(self): + self.file = "" + self.sequence = "" + self.start = 0 + self.end = 0 + self.gene = "" + self.shortGene = "" + self.coverage = "" + self.coverage_map = "" + self.gaps = "" + self.pCoverage = 100.00 + self.pIdentity = 100.00 + self.database = "" + self.accession = "" + self.product = "" + self.source = "chromosome" + self.row = "" + +class PlasFlowResult(object): + def __init__(self): + self.sequence = "" + self.length = 0 + self.label = "" + self.confidence = 0 + self.usefulRow = "" + self.row = "" + +class MlstResult(object): + def __init__(self): + self.file = "" + self.speciesID = "" + self.seqType = 0 + self.scheme = "" + self.species = "" + self.row="" + +class mobsuiteResult(object): + def __init__(self): + self.file_id = "" + self.cluster_id = "" + self.contig_id = "" + self.contig_num = 0 + self.contig_length = 0 + self.circularity_status = "" + self.rep_type = "" + self.rep_type_accession = "" + self.relaxase_type = "" + self.relaxase_type_accession = "" + self.mash_nearest_neighbor = "" + self.mash_neighbor_distance = 0.00 + self.repetitive_dna_id = "" + self.match_type = "" + self.score = 0 + self.contig_match_start = 0 + self.contig_match_end = 0 + self.row = "" + +class mobsuitePlasmids(object): + def __init__(self): + self.file_id = "" + self.num_contigs = 0 + self.total_length = 0 + self.gc = "" + self.rep_types = "" + self.rep_typeAccession = "" + self.relaxase_type= "" + self.relaxase_type_accession = "" + self.mpf_type = "" + self.mpf_type_accession= "" + self.orit_type = "" + self.orit_accession = "" + self.PredictedMobility = "" + self.mash_nearest_neighbor = "" + self.mash_neighbor_distance = 0.00 + self.mash_neighbor_cluster= 0 + self.row = "" +class RGIResult(object): + def __init__(self): + self.ORF_ID = "" + self.Contig = "" + self.Start = -1 + self.Stop = -1 + self.Orientation = "" + self.Cut_Off = "" + self.Pass_Bitscore = 100000 + self.Best_Hit_Bitscore = 0.00 + self.Best_Hit_ARO = "" + self.Best_Identities = 0.00 + self.ARO = 0 + self.Model_type = "" + self.SNPs_in_Best_Hit_ARO = "" + self.Other_SNPs = "" + self.Drug_Class = "" + self.Resistance_Mechanism = "" + self.AMR_Gene_Family = "" + self.Predicted_DNA = "" + self.Predicted_Protein = "" + self.CARD_Protein_Sequence = "" + self.Percentage_Length_of_Reference_Sequence = 0.00 + self.ID = "" + self.Model_ID = 0 + self.source = "" + self.row = "" + +#endregion + +#region useful functions +def read(path): + return [line.rstrip('\n') for line in open(path)] +def execute(command): + process = subprocess.Popen(command, shell=False, cwd=curDir, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) + + # Poll process for new output until finished + while True: + nextline = process.stdout.readline() + if nextline == '' and process.poll() is not None: + break + sys.stdout.write(nextline) + sys.stdout.flush() + + output = process.communicate()[0] + exitCode = process.returncode + + if (exitCode == 0): + return output + else: + raise subprocess.CalledProcessError(exitCode, command) +def httpGetFile(url, filepath=""): + if (filepath == ""): + return urllib.request.urlretrieve(url) + else: + urllib.request.urlretrieve(url, filepath) + return True +def gunzip(inputpath="", outputpath=""): + if (outputpath == ""): + with gzip.open(inputpath, 'rb') as f: + gzContent = f.read() + return gzContent + else: + with gzip.open(inputpath, 'rb') as f: + gzContent = f.read() + with open(outputpath, 'wb') as out: + out.write(gzContent) + return True +def ToJson(dictObject, outputPath): + #outDir = outputDir + '/summary/' + ID + ".json/" + #if not (os.path.exists(outDir)): + #os.makedirs(outDir) + #with open(outputPath, 'w') as f: + #json.dump([ob.__dict__ for ob in dictObject.values()], f, ensure_ascii=False) + return "" +#endregion + +#region functions to parse result files +def ParseMLSTResult(pathToMLSTResult, scheme): + _mlstResult = {} + scheme = pandas.read_csv(scheme, delimiter='\t', header=0) + scheme = scheme.replace(numpy.nan, '', regex=True) + + taxon = {} + #record the scheme as a dictionary + taxon["-"] = "No MLST Match" + for i in range(len(scheme.index)): + key = scheme.iloc[i,0] + if (str(scheme.iloc[i,2]) == "nan"): + value = str(scheme.iloc[i,1]) + else: + value = str(scheme.iloc[i,1]) + " " + str(scheme.iloc[i,2]) + + if (key in taxon.keys()): + taxon[key] = taxon.get(key) + ";" + value + else: + taxon[key] = value + #read in the mlst result + mlst = pandas.read_csv(pathToMLSTResult, delimiter='\t', header=None) + _mlstHit = MlstResult() + + _mlstHit.file = mlst.iloc[0,0] + _mlstHit.speciesID = (mlst.iloc[0,1]) + _mlstHit.seqType = str(mlst.iloc[0,2]) + for i in range(3, len(mlst.columns)): + _mlstHit.scheme += mlst.iloc[0,i] + ";" + _mlstHit.species = taxon[_mlstHit.speciesID] + _mlstHit.row = "\t".join(str(x) for x in mlst.ix[0].tolist()) + _mlstResult[_mlstHit.speciesID]=_mlstHit + + return _mlstResult + +def ParsePlasmidFinderResult(pathToPlasmidFinderResult): + #pipelineTest/contigs/BC110-Kpn005.fa contig00019 45455 45758 IncFIC(FII)_1 8-308/499 ========/=..... 8/11 59.52 75.65 plasmidfinder AP001918 IncFIC(FII)_1__AP001918 + #example resfinder: + #pipelineTest/contigs/BC110-Kpn005.fa contig00038 256 1053 OXA-181 1-798/798 =============== 0/0 100.00 100.00 bccdc AEP16366.1 OXA-48 family carbapenem-hydrolyzing class D beta-lactamase OXA-181 + + _pFinder = {} #*********************** + plasmidFinder = pandas.read_csv(pathToPlasmidFinderResult, delimiter='\t', header=0) + plasmidFinder = plasmidFinder.replace(numpy.nan, '', regex=True) + + + for i in range(len(plasmidFinder.index)): + pf = starFinders() + pf.file = str(plasmidFinder.iloc[i,0]) + pf.sequence = str(plasmidFinder.iloc[i,1]) + pf.start = int(plasmidFinder.iloc[i,2]) + pf.end = int(plasmidFinder.iloc[i,3]) + pf.gene = str(plasmidFinder.iloc[i,4]) + pf.shortGene = pf.gene[:pf.gene.index("_")] + pf.coverage = str(plasmidFinder.iloc[i,5]) + pf.coverage_map = str(plasmidFinder.iloc[i,6]) + pf.gaps = str(plasmidFinder.iloc[i,7]) + pf.pCoverage = float(plasmidFinder.iloc[i,8]) + pf.pIdentity = float(plasmidFinder.iloc[i,9]) + pf.database = str(plasmidFinder.iloc[i,10]) + pf.accession = str(plasmidFinder.iloc[i,11]) + pf.product = str(plasmidFinder.iloc[i,12]) + pf.source = "plasmid" + pf.row = "\t".join(str(x) for x in plasmidFinder.ix[i].tolist()) + _pFinder[pf.gene]=pf + #row = "\t".join(str(x) for x in plasmidFinder.ix[i].tolist()) + #plasmidFinderContigs.append(str(plasmidFinder.iloc[i,1])) + #origins.append(str(plasmidFinder.iloc[i,4][:plasmidFinder.iloc[i,4].index("_")])) + return _pFinder + +def ParseMobsuiteResult(pathToMobsuiteResult): + _mobsuite = {} + mResult = pandas.read_csv(pathToMobsuiteResult, delimiter='\t', header=0) + mResult = mResult.replace(numpy.nan, '', regex=True) + + for i in range(len(mResult.index)): + mr = mobsuiteResult() + mr.file_id = str(mResult.iloc[i,0]) + mr.cluster_id = str(mResult.iloc[i,1]) + if (mr.cluster_id == "chromosome"): + break + mr.contig_id = str(mResult.iloc[i,2]) + mr.contig_num = mr.contig_id[(mr.contig_id.find("contig")+6):mr.contig_id.find("_len=")] + mr.contig_length = int(mResult.iloc[i,3]) + mr.circularity_status = str(mResult.iloc[i,4]) + mr.rep_type = str(mResult.iloc[i,5]) + mr.rep_type_accession = str(mResult.iloc[i,6]) + mr.relaxase_type = str(mResult.iloc[i,7]) + mr.relaxase_type_accession = str(mResult.iloc[i,8]) + mr.mash_nearest_neighbor = str(mResult.iloc[i,9]) + mr.mash_neighbor_distance = float(mResult.iloc[i,10]) + mr.repetitive_dna_id = str(mResult.iloc[i,11]) + mr.match_type = str(mResult.iloc[i,12]) + if (mr.match_type == ""): + mr.score = -1 + mr.contig_match_start = -1 + mr.contig_match_end = -1 + else: + mr.score = int(mResult.iloc[i,13]) + mr.contig_match_start = int(mResult.iloc[i,14]) + mr.contig_match_end = int(mResult.iloc[i,15]) + mr.row = "\t".join(str(x) for x in mResult.ix[i].tolist()) + _mobsuite[mr.contig_id]=(mr) + return _mobsuite + +def ParseMobsuitePlasmids(pathToMobsuiteResult): + _mobsuite = {} + mResults = pandas.read_csv(pathToMobsuiteResult, delimiter='\t', header=0) + mResults = mResults.replace(numpy.nan, '', regex=True) + + for i in range(len(mResults.index)): + mr = mobsuitePlasmids() + mr.file_id = str(mResults.iloc[i,0]) + mr.num_contigs = int(mResults.iloc[i,1]) + mr.total_length = int(mResults.iloc[i,2]) + mr.gc = int(mResults.iloc[i,3]) + mr.rep_types = str(mResults.iloc[i,4]) + mr.rep_typeAccession = str(mResults.iloc[i,5]) + mr.relaxase_type = str(mResults.iloc[i,6]) + mr.relaxase_type_accession = str(mResults.iloc[i,7]) + mr.mpf_type = str(mResults.iloc[i,8]) + mr.mpf_type_accession = str(mResults.iloc[i,9]) + mr.orit_type = str(mResults.iloc[i,10]) + mr.orit_accession = str(mResults.iloc[i,11]) + mr.PredictedMobility = str(mResults.iloc[i,12]) + mr.mash_nearest_neighbor = str(mResults.iloc[i,13]) + mr.mash_neighbor_distance = float(mResults.iloc[i,14]) + mr.mash_neighbor_cluster = int(mResults.iloc[i,15]) + mr.row = "\t".join(str(x) for x in mResults.ix[i].tolist()) + _mobsuite[mr.file_id] = mr + return _mobsuite + +def ParseResFinderResult(pathToResFinderResults, plasmidContigs, likelyPlasmidContigs): + _rFinder = {} + resFinder = pandas.read_csv(pathToResFinderResults, delimiter='\t', header=0) + resFinder = resFinder.replace(numpy.nan, '', regex=True) + + for i in range(len(resFinder.index)): + rf = starFinders() + rf.file = str(resFinder.iloc[i,0]) + rf.sequence = str(resFinder.iloc[i,1]) + rf.start = int(resFinder.iloc[i,2]) + rf.end = int(resFinder.iloc[i,3]) + rf.gene = str(resFinder.iloc[i,4]) + rf.shortGene = rf.gene + rf.coverage = str(resFinder.iloc[i,5]) + rf.coverage_map = str(resFinder.iloc[i,6]) + rf.gaps = str(resFinder.iloc[i,7]) + rf.pCoverage = float(resFinder.iloc[i,8]) + rf.pIdentity = float(resFinder.iloc[i,9]) + rf.database = str(resFinder.iloc[i,10]) + rf.accession = str(resFinder.iloc[i,11]) + rf.product = str(resFinder.iloc[i,12]) + rf.row = "\t".join(str(x) for x in resFinder.ix[i].tolist()) + if (rf.sequence[6:] in plasmidContigs): + rf.source = "plasmid" + elif (rf.sequence[6:] in likelyPlasmidContigs): + rf.source = "likely plasmid" + else: + rf.source = "likely chromosome" + _rFinder[rf.gene]=rf + return _rFinder + +def ParseRGIResult(pathToRGIResults, plasmidContigs, likelyPlasmidContigs): + _rgiR = {} + RGI = pandas.read_csv(pathToRGIResults, delimiter='\t', header=0) + RGI = RGI.replace(numpy.nan, '', regex=True) + + for i in range(len(RGI.index)): + r = RGIResult() + r.ORF_ID = str(RGI.iloc[i,0]) + r.Contig = str(RGI.iloc[i,1]) + r.Contig_Num = r.Contig[6:r.Contig.find("_")] + r.Start = int(RGI.iloc[i,2]) + r.Stop = int(RGI.iloc[i,3]) + r.Orientation = str(RGI.iloc[i,4]) + r.Cut_Off = str(RGI.iloc[i,5]) + r.Pass_Bitscore = int(RGI.iloc[i,6]) + r.Best_Hit_Bitscore = float(RGI.iloc[i,7]) + r.Best_Hit_ARO = str(RGI.iloc[i,8]) + r.Best_Identities = float(RGI.iloc[i,9]) + r.ARO = int(RGI.iloc[i,10]) + r.Model_type = str(RGI.iloc[i,11]) + r.SNPs_in_Best_Hit_ARO = str(RGI.iloc[i,12]) + r.Other_SNPs = str(RGI.iloc[i,13]) + r.Drug_Class = str(RGI.iloc[i,14]) + r.Resistance_Mechanism = str(RGI.iloc[i,15]) + r.AMR_Gene_Family = str(RGI.iloc[i,16]) + r.Predicted_DNA = str(RGI.iloc[i,17]) + r.Predicted_Protein = str(RGI.iloc[i,18]) + r.CARD_Protein_Sequence = str(RGI.iloc[i,19]) + r.Percentage_Length_of_Reference_Sequence = float(RGI.iloc[i,20]) + r.ID = str(RGI.iloc[i,21]) + r.Model_ID = int(RGI.iloc[i,22]) + r.row = "\t".join(str(x) for x in RGI.ix[i].tolist()) + if (r.Contig_Num in plasmidContigs): + r.source = "plasmid" + elif (r.Contig_Num in likelyPlasmidContigs): + r.source = "likely plasmid" + else: + r.source = "likely chromosome" + _rgiR[r.Model_ID]=r + return _rgiR +#endregion + +def Main(): + outputDir = "./" + notes = [] + #init the output list + output = [] + jsonOutput = [] + + print(str(datetime.datetime.now()) + "\n\nID: " + ID + "\nAssembly: " + options.id) + output.append(str(datetime.datetime.now()) + "\n\nID: " + ID + "\nAssembly: " + options.id) + + #region parse the mlst results + print("step 3: parsing mlst, plasmid, and amr results") + + print("identifying MLST") + mlstHit = ParseMLSTResult(mlst, str(mlstScheme))#*********************** + ToJson(mlstHit, "mlst.json") #write it to a json output + mlstHit = list(mlstHit.values())[0] + + #endregion + + #region parse mobsuite, resfinder and rgi results + print("identifying plasmid contigs and amr genes") + + plasmidContigs = [] + likelyPlasmidContigs = [] + origins = [] + + #parse mobsuite results + mSuite = ParseMobsuiteResult(mobfindercontig) #outputDir + "/predictions/" + ID + ".recon/contig_report.txt")#************* + ToJson(mSuite, "mobsuite.json") #************* + mSuitePlasmids = ParseMobsuitePlasmids(mobfinderaggregate)#outputDir + "/predictions/" + ID + ".recon/mobtyper_aggregate_report.txt")#************* + ToJson(mSuitePlasmids, "mobsuitePlasmids.json") #************* + + for key in mSuite: + if mSuite[key].contig_num not in plasmidContigs and mSuite[key].contig_num not in likelyPlasmidContigs: + if not (mSuite[key].rep_type == ''): + plasmidContigs.append(mSuite[key].contig_num) + else: + likelyPlasmidContigs.append(mSuite[key].contig_num) + for key in mSuite: + if mSuite[key].rep_type not in origins: + origins.append(mSuite[key].rep_type) + + #parse resfinder AMR results + rFinder = ParseResFinderResult(abricate, plasmidContigs, likelyPlasmidContigs)#outputDir + "/predictions/" + ID + ".cp", plasmidContigs, likelyPlasmidContigs) #********************** + ToJson(rFinder, "resfinder.json") #************* + + rgiAMR = ParseRGIResult(rgi, plasmidContigs, likelyPlasmidContigs) # outputDir + "/predictions/" + ID + ".rgi.txt", plasmidContigs, likelyPlasmidContigs)#*********************** + ToJson(rgiAMR, "rgi.json") #************* + + carbapenamases = [] + amrGenes = [] + for keys in rFinder: + carbapenamases.append(rFinder[keys].shortGene + "(" + rFinder[keys].source + ")") + for keys in rgiAMR: + if (rgiAMR[keys].Drug_Class.find("carbapenem") > -1): + if (rgiAMR[keys].Best_Hit_ARO not in carbapenamases): + carbapenamases.append(rgiAMR[keys].Best_Hit_ARO+ "(" + rgiAMR[keys].source + ")") + else: + if (rgiAMR[keys].Best_Hit_ARO not in amrGenes): + amrGenes.append(rgiAMR[keys].Best_Hit_ARO+ "(" + rgiAMR[keys].source + ")") + #endregion + + #region output parsed mlst information + print("formatting mlst outputs") + output.append("\n\n\n~~~~~~~MLST summary~~~~~~~") + output.append("MLST determined species: " + mlstHit.species) + output.append("\nMLST Details: ") + output.append(mlstHit.row) + + output.append("\nMLST information: ") + if (mlstHit.species == expectedSpecies): + output.append("MLST determined species is the same as expected species") + #notes.append("MLST determined species is the same as expected species") + else: + output.append("!!!MLST determined species is NOT the same as expected species, contamination? mislabeling?") + notes.append("MLST: Not expected species. Possible contamination or mislabeling") + + #endregion + + #region output the parsed plasmid/amr results + output.append("\n\n\n~~~~~~~~Plasmids~~~~~~~~\n") + + output.append("predicted plasmid origins: ") + output.append(";".join(origins)) + + output.append("\ndefinitely plasmid contigs") + output.append(";".join(plasmidContigs)) + + output.append("\nlikely plasmid contigs") + output.append(";".join(likelyPlasmidContigs)) + + output.append("\nmob-suite prediction details: ") + for key in mSuite: + output.append(mSuite[key].row) + + output.append("\n\n\n~~~~~~~~AMR Genes~~~~~~~~\n") + output.append("predicted carbapenamase Genes: ") + output.append(",".join(carbapenamases)) + output.append("other RGI AMR Genes: ") + for key in rgiAMR: + output.append(rgiAMR[key].Best_Hit_ARO + "(" + rgiAMR[key].source + ")") + + output.append("\nDetails about the carbapenamase Genes: ") + for key in rFinder: + output.append(rFinder[key].row) + output.append("\nDetails about the RGI AMR Genes: ") + for key in rgiAMR: + output.append(rgiAMR[key].row) + + #write summary to a file + summaryDir = outputDir + "/summary/" + ID + out = open("summary.txt", 'w') + for item in output: + out.write("%s\n" % item) + + + #TSV output + tsvOut = [] + tsvOut.append("ID\tExpected Species\tMLST Species\tSequence Type\tMLST Scheme\tCarbapenem Resistance Genes\tOther AMR Genes\tTotal Plasmids\tPlasmids ID\tNum_Contigs\tPlasmid Length\tPlasmid RepType\tPlasmid Mobility\tNearest Reference\tDefinitely Plasmid Contigs\tLikely Plasmid Contigs") + #start with ID + temp = "" + temp += (ID + "\t") + temp += expectedSpecies + "\t" + + #move into MLST + temp += mlstHit.species + "\t" + temp += str(mlstHit.seqType) + "\t" + temp += mlstHit.scheme + "\t" + + #now onto AMR genes + temp += ";".join(carbapenamases) + "\t" + temp += ";".join(amrGenes) + "\t" + + #lastly plasmids + temp+= str(len(mSuitePlasmids)) + "\t" + plasmidID = "" + contigs = "" + lengths = "" + rep_type = "" + mobility = "" + neighbour = "" + for keys in mSuitePlasmids: + plasmidID += str(mSuitePlasmids[keys].mash_neighbor_cluster) + ";" + contigs += str(mSuitePlasmids[keys].num_contigs) + ";" + lengths += str(mSuitePlasmids[keys].total_length) + ";" + rep_type += str(mSuitePlasmids[keys].rep_types) + ";" + mobility += str(mSuitePlasmids[keys].PredictedMobility) + ";" + neighbour += str(mSuitePlasmids[keys].mash_nearest_neighbor) + ";" + temp += plasmidID + "\t" + contigs + "\t" + lengths + "\t" + rep_type + "\t" + mobility + "\t" + neighbour + "\t" + temp += ";".join(plasmidContigs) + "\t" + temp += ";".join(likelyPlasmidContigs) + tsvOut.append(temp) + + summaryDir = outputDir + "/summary/" + ID + out = open("summary.tsv", 'w') + for item in tsvOut: + out.write("%s\n" % item) + #endregion + + +start = time.time()#time the analysis +print("Starting workflow...") +#analysis time +Main() + +end = time.time() +print("Finished!\nThe analysis used: " + str(end-start) + " seconds")