Join GitHub today
+GitHub is home to over 36 million developers working together to host and review code, manage projects, and build software together.
+ Sign up ++ VAPPER-Galaxy/Tryp_T.py +
+ +| + | """ | +
| + | * Copyright 2018 University of Liverpool | +
| + | * Author: John Heap, Computational Biology Facility, UoL | +
| + | * Based on original scripts of Sara Silva Pereira, Institute of Infection and Global Health, UoL | +
| + | * | +
| + | * Licensed under the Apache License, Version 2.0 (the "License"); | +
| + | * you may not use this file except in compliance with the License. | +
| + | * You may obtain a copy of the License at | +
| + | * | +
| + | * http://www.apache.org/licenses/LICENSE-2.0 | +
| + | * | +
| + | * Unless required by applicable law or agreed to in writing, software | +
| + | * distributed under the License is distributed on an "AS IS" BASIS, | +
| + | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | +
| + | * See the License for the specific language governing permissions and | +
| + | * limitations under the License. | +
| + | * | +
| + | """ | +
| + | + | +
| + | + | +
| + | import subprocess | +
| + | import pandas as pd | +
| + | import re | +
| + | import os | +
| + | import sys | +
| + | import matplotlib as mpl | +
| + | mpl.use('Agg') | +
| + | import matplotlib.pyplot as plt | +
| + | + | +
| + | pList = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10', 'P11', 'P12', 'P13', 'P14', 'P15'] | +
| + | quietString = "" #"">> Vap_log.txt 2>&1" | +
| + | def transcriptMapping(inputname, strain, forwardFN,reverseFN): | +
| + | #where is our Reference data - | +
| + | dir_path = os.path.dirname(os.path.realpath(__file__)) | +
| + | refName = dir_path+"/data/Reference/Tc148" #default | +
| + | if strain == "Tc148": | +
| + | refName = dir_path+"/data/Reference/Tc148" | +
| + | if strain == "IL3000": | +
| + | refName = dir_path+"/data/Reference/IL3000" | +
| + | #argString = "bowtie2 -x Refe4rence/IL3000 -1 data/"+forwardFN+" -2 data/"+reverseFN+" -S "+inputname+".sam" #>log.txt | +
| + | #argString = "bowtie2 -x Reference/Tc148 -1 data/"+forwardFN+" -2 data/"+reverseFN+" -S "+inputname+".sam" #>log.txt | +
| + | argString = "bowtie2 -x "+refName+" -1 "+forwardFN+" -2 "+reverseFN+" -S "+inputname+".sam"+quietString #>log.txt | +
| + | #print(argString) | +
| + | returncode = subprocess.call(argString, shell=True) | +
| + | + | +
| + | def processSamFiles(inputname): | +
| + | #debug use a mapping sam file we have already found | +
| + | #dir_path = os.path.dirname(os.path.realpath(__file__)) | +
| + | #bugName = dir_path+"/data/T_Test" #defasult | +
| + | + | +
| + | cur_path = os.getcwd() | +
| + | samName = cur_path+"/"+inputname | +
| + | + | +
| + | #argString = "samtools view -bS "+bugName+" > "+inputname+".bam" | +
| + | argString = "samtools view -bS "+inputname+".sam > "+samName+".bam"+quietString | +
| + | #print(argString) | +
| + | returncode = subprocess.call(argString, shell=True) | +
| + | + | +
| + | + | +
| + | #argString = "samtools sort "+bugName+" -o "+inputname+".sorted" | +
| + | argString = "samtools sort "+samName+".bam -o "+samName+".sorted"+quietString | +
| + | #print("argstring = "+argString) | +
| + | returncode = subprocess.call(argString, shell=True) | +
| + | + | +
| + | #argString = "samtools index "+bugName+".sorted "+inputname+".sorted.bai" | +
| + | argString = "samtools index "+samName+".sorted "+samName+".sorted.bai"+quietString | +
| + | #print("argstring = " + argString) | +
| + | returncode = subprocess.call(argString, shell=True) | +
| + | + | +
| + | + | +
| + | + | +
| + | + | +
| + | def transcriptAbundance(inputname, strain): | +
| + | dir_path = os.path.dirname(os.path.realpath(__file__)) | +
| + | refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # defasult | +
| + | if strain == "Tc148": | +
| + | refName = dir_path + "/data/Reference/ORFAnnotation.gtf" | +
| + | if strain == "IL3000": | +
| + | refName = dir_path + "/data/Reference/IL3000.gtf" | +
| + | #argString = "cufflinks -G Reference/IL3000.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted" | +
| + | #argString = "cufflinks -G Reference/ORFAnnotation.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted" | +
| + | argString = "cufflinks -q -G "+refName+" -o "+inputname+".cuff -u -p 8 "+inputname+".sorted"+quietString | +
| + | returncode = subprocess.call(argString, shell = True) | +
| + | + | +
| + | + | +
| + | def convertToFasta(inputName, strain): #equivalent to Sara's awk scripte | +
| + | dir_path = os.path.dirname(os.path.realpath(__file__)) | +
| + | refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # default | +
| + | if strain == "Tc148": | +
| + | refName = dir_path + "/data/Reference/148_prot.fasta" | +
| + | if strain == "IL3000": | +
| + | refName = dir_path + "/data/Reference/IL3000_prot.fasta" | +
| + | + | +
| + | cuff_df = pd.read_csv(inputName+".cuff/genes.fpkm_tracking", sep='\t') | +
| + | cuff_df = cuff_df[(cuff_df['FPKM'] > 0)] | +
| + | cuff_df.to_csv("cuffTest.csv") | +
| + | gene_id_List = cuff_df['gene_id'].tolist() | +
| + | + | +
| + | #print(gene_id_List) | +
| + | #print ("Found from 8880="+str(found)) | +
| + | + | +
| + | # need to load in IL3000_prot.fasta | +
| + | # for each line with >TcIL3000_1_1940 | +
| + | # search within cuff_df[gene_id] for match | +
| + | # add it to the outfile. (need to save it as used by hmmer later | +
| + | number = 0 | +
| + | all = 0 | +
| + | with open(inputName+"_6frame.fas", 'w') as outfile: | +
| + | ref = open(refName,'r') | +
| + | #ref = open(r"Reference/IL3000_prot.fasta",'r') | +
| + | n = 0 | +
| + | line = ref.readline() | +
| + | while line: | +
| + | if line[0] == '>': | +
| + | all = all+1 | +
| + | ln = line[1:] #remove > | +
| + | ln = ln.rstrip() #remove /n /r etc | +
| + | #print (ln) | +
| + | if ln in gene_id_List: | +
| + | number = number+1 | +
| + | outfile.write(line) | +
| + | line = ref.readline() | +
| + | if line: | +
| + | while line[0] != '>': | +
| + | outfile.write(line) | +
| + | line=ref.readline() | +
| + | if not line: | +
| + | break; | +
| + | else: | +
| + | line = ref.readline() | +
| + | else: | +
| + | line =ref.readline() | +
| + | ref.close() | +
| + | print(str(len(gene_id_List))+":"+str(number)+" from "+str(all)) | +
| + | return cuff_df | +
| + | + | +
| + | def HMMerMotifSearch(name, strain, cuff_df): | +
| + | motifs = ['1', '2a', '2b', '3', '4a', '4b', '4c', '5', '6', '7', '8a', '8b', '9a', '9b', | +
| + | '9c', '10a', '10b', '11a', '11b', '12', '13a', '13b', '13c', '13d', '14', '15a', '15b', '15c'] | +
| + | dir_path = os.path.dirname(os.path.realpath(__file__)) | +
| + | phylopath = dir_path + "/data/Motifs/Phylotype" | +
| + | lineCounts = [] | +
| + | compoundList = [] | +
| + | for m in motifs: | +
| + | argString = "hmmsearch "+phylopath + m + ".hmm " + name + "_6frame.fas > Phy" + m + ".out" | +
| + | print(argString) | +
| + | subprocess.call(argString, shell=True) | +
| + | hmmResult = open("Phy" + m + ".out", 'r') | +
| + | regex = r"Tc148[0-9]{1,8}" | +
| + | if strain == "Tc148": | +
| + | regex = r"Tc148[0-9]{1,8}" | +
| + | if strain == "IL3000": | +
| + | regex = r"TcIL3000_[0-9]{1,4}_[0-9]{1,5}" | +
| + | n = 0 | +
| + | outList = [] | +
| + | for line in hmmResult: | +
| + | m = re.search(regex, line) | +
| + | if m: | +
| + | outList.append(""+m.group()) | +
| + | n += 1 | +
| + | if re.search(r"inclusion", line): | +
| + | print("inclusion threshold reached") | +
| + | break | +
| + | compoundList.append(outList) | +
| + | lineCounts.append(n) | +
| + | hmmResult.close() | +
| + | #print(lineCounts) | +
| + | + | +
| + | #print(cuff_df) | +
| + | concatGroups = [1, 2, 1, 3, 1, 1, 1, 2, 3, 2, 2, 1, 4, 1, 3] | +
| + | countList = [] | +
| + | weightList = [] | +
| + | countIndex = 0 | +
| + | totalCount = 0 | +
| + | totalWeigth = 0 | +
| + | for c in concatGroups: | +
| + | a = [] | +
| + | weight = [] | +
| + | for n in range(0, c): | +
| + | a = a + compoundList.pop(0) | +
| + | t = set(a) | +
| + | countList.append(len(t)) | +
| + | wa = 0 | +
| + | for w in t: | +
| + | wt = cuff_df.loc[cuff_df['gene_id'] == w, 'FPKM'].iloc[0] | +
| + | #print(w) | +
| + | #print(wt) | +
| + | wa = wa+wt | +
| + | weightList.append(wa) | +
| + | totalWeigth+=wa | +
| + | totalCount += len(t) | +
| + | countList.append(totalCount) | +
| + | weightList.append(totalWeigth) | +
| + | #print(countList) | +
| + | #print("--------") | +
| + | #print(weightList) | +
| + | #print("--------") | +
| + | return countList,weightList | +
| + | + | +
| + | def relativeFrequencyTable(countList, name, htmlresource): | +
| + | relFreqList = [] | +
| + | c = float(countList[15]) | +
| + | for i in range(0, 15): | +
| + | relFreqList.append(countList[i] / c) | +
| + | + | +
| + | data = {'Phylotype': pList, 'Relative Frequency': relFreqList} | +
| + | relFreq_df = pd.DataFrame(data) | +
| + | j_fname = htmlresource+ "/" + name + "_t_relative_frequency.csv" | +
| + | relFreq_df.to_csv(j_fname) | +
| + | return relFreqList # 0-14 = p1-p15 counts [15] = total counts | +
| + | + | +
| + | + | +
| + | def weightedFrequencyTable(countList, name, htmlresource): | +
| + | relFreqList = [] | +
| + | c = float(countList[15]) | +
| + | for i in range(0, 15): | +
| + | relFreqList.append(countList[i] / c) | +
| + | + | +
| + | data = {'Phylotype': pList, 'Weighted Frequency': relFreqList} | +
| + | relFreq_df = pd.DataFrame(data) | +
| + | j_fname = htmlresource+ "/" + name + "_t_weighted_frequency.csv" | +
| + | relFreq_df.to_csv(j_fname) | +
| + | return relFreqList # 0-14 = p1-p15 counts [15] = total counts | +
| + | + | +
| + | + | +
| + | + | +
| + | def createStackedBar(name,freqList,strain,pdf,html_resource): | +
| + | palette = ["#0000ff", "#6495ed", "#00ffff", "#caff70", | +
| + | "#228b22", "#528b8b", "#00ff00", "#a52a2a", | +
| + | "#ff0000", "#ffff00", "#ffa500", "#ff1493", | +
| + | "#9400d3", "#bebebe", "#000000", "#ff00ff"] | +
| + | + | +
| + | VAP_148 = [0.072, 0.032, 0.032, 0.004, 0.007, | +
| + | 0.005, 0.202, 0.004, 0.006, 0.014, | +
| + | 0.130, 0.133, 0.054, 0.039, 0.265] | +
| + | + | +
| + | VAP_IL3000 = [0.073, 0.040, 0.049, 0.018, 0.060, | +
| + | 0.055, 0.054, 0.025, 0.012, 0.060, | +
| + | 0.142, 0.100, 0.061, 0.078, 0.172] | +
| + | cmap = plt.cm.get_cmap('tab20') | +
| + | palette = [cmap(i) for i in range(cmap.N)] | +
| + | + | +
| + | if strain == "Tc148": | +
| + | VAPtable = VAP_148 | +
| + | VAPname='Tc148\nGenome VAP' | +
| + | if strain == "IL3000": | +
| + | VAPtable = VAP_IL3000 | +
| + | VAPname= 'IL3000\nGenome VAP' | +
| + | width = 0.35 # the width of the bars: can also be len(x) sequence | +
| + | plots = [] | +
| + | fpos = 0 | +
| + | vpos = 0 | +
| + | for p in range(0, 15): | +
| + | tp = plt.bar(0, freqList[p], width, color= palette[p], bottom = fpos) | +
| + | fpos +=freqList[p] | +
| + | + | +
| + | tp = plt.bar(1, VAPtable[p], width, color= palette[p], bottom = vpos) | +
| + | vpos +=VAPtable[p] | +
| + | + | +
| + | plots.append(tp) | +
| + | plt.xticks([0,1],[name,VAPname]) | +
| + | plt.legend(plots[::-1],['p15','p14','p13','p12','p11','p10','p9','p8','p7','p6','p5','p4','p3','p2','p1']) | +
| + | title = "Figure Legend: The transcriptomic Variant Antigen Profile of $\itTrypanosoma$ $\itcongolense$ estimated as phylotype " \ | +
| + | "proportion adjusted for transcript abundance and the reference genomic Variant Antigen Profile. " \ | +
| + | "\nData was produced with the 'Variant Antigen Profiler' (Silva Pereira et al., 2019)." | +
| + | #plt.title(title, wrap="True") | +
| + | #plt.text(-0.2, -0.05, title, va="top", transform=ax.transAxes, wrap="True") | +
| + | plt.text(-0.3, -0.15, title, va="top", wrap="True") | +
| + | plt.tight_layout(pad=1.5) | +
| + | plt.subplots_adjust(bottom = 0.3,top=0.99,left=0.125,right=0.9,hspace=0.2,wspace=0.2) | +
| + | + | +
| + | plt.savefig(html_resource + "/stackedbar.png") | +
| + | if pdf == 'PDF_Yes': | +
| + | plt.savefig(html_resource + "/stackedbar.pdf") | +
| + | #plt.show() | +
| + | + | +
| + | + | +
| + | def createHTML(name,htmlfn,htmlresource,freqList,weightList): | +
| + | #assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource | +
| + | htmlString = r"<html><title>T.congolense VAP</title><body><div style='text-align:center'><h2><i>Trypanosoma congolense</i> Variant Antigen Profile</h2><h3>" | +
| + | htmlString += name | +
| + | htmlString += r"<br>Transcriptomic Analysis</h3></p>" | +
| + | htmlString += "<p style = 'margin-left:20%; margin-right:20%'>Table Legend: Variant Antigen Profiles of a transcriptome of <i>Trypanosoma congolense</i> estimated as phylotype proportion. " \ | +
| + | "Weighted frequency refers to the phylotype proportion based transcript abundance. " \ | +
| + | "Data was produced with the 'Variant Antigen Profiler' (Silva Pereira et al., 2019).</p> " | +
| + | htmlString += r"<style> table, th, tr, td {border: 1px solid black; border-collapse: collapse;}</style>" | +
| + | + | +
| + | htmlString += r"<table style='width:50%;margin-left:25%;text-align:center'><tr><th>Phylotype</th><th>Relative Frequency</th><th>Weighted Frequency</th></tr>" | +
| + | tabString = "" | +
| + | # flush out table with correct values | +
| + | for i in range(0, 15): | +
| + | f = format(freqList[i], '.4f') | +
| + | w = format(weightList[i], '.4f') | +
| + | tabString += "<tr><td>phy" + str(i + 1) + "</td><td>" + f + "</td><td>" + w + "</td></tr>" | +
| + | htmlString += tabString + "</table><br><br><br><br><br>" | +
| + | htmlString += r"<p> <h3>Stacked Bar chart of Phylotype Frequency</h3> The 'weighted' relative frequency of each phylotype alongside the VAP of selected strain.</p>" | +
| + | imgString = r"<img src = 'stackedbar.png' alt='Stacked bar chart of phylotype variation' style='max-width:100%'><br><br>" | +
| + | htmlString += imgString | +
| + | + | +
| + | # htmlString += r"<p><h3>The Deviation Heat Map and Dendogram</h3>The phylotype variation expressed as the deviation from your sample mean compared to the model dataset</p>" | +
| + | # imgString = r"<img src = 'dheatmap.png' alt='Deviation Heatmap' style='max-width:100%'><br><br>" | +
| + | # htmlString += imgString | +
| + | + | +
| + | # htmlString += r"<p><h3>The Variation PCA plot</h3>PCA analysis corresponding to absolute variation. Colour coded according to location</p>" | +
| + | # imgString = r"<img src = 'vapPCA.png' alt='PCA Analysis' style='max-width:100%'><br><br>" | +
| + | # htmlString += imgString + r"</div></body></html>" | +
| + | + | +
| + | with open(htmlfn, "w") as htmlfile: | +
| + | htmlfile.write(htmlString) | +
| + | + | +
| + | #argdict = {'name':2, 'pdfexport': 3, 'strain': 4, 'forward': 5, 'reverse': 6, 'html_file': 7, 'html_resource': 8} | +
| + | def transcriptomicProcess(args,dict): | +
| + | transcriptMapping(args[dict['name']], args[dict['strain']], args[dict['forward']], args[dict['reverse']]) #uses bowtie | +
| + | processSamFiles(args[dict['name']]) #uses samtools | +
| + | transcriptAbundance(args[dict['name']],args[dict['strain']]) #uses cufflinks -> ?.cuff/*.* | +
| + | cuff_df = convertToFasta(args[dict['name']],args[dict['strain']]) | +
| + | countList, weightList = HMMerMotifSearch(args[dict['name']],args[dict['strain']], cuff_df) | +
| + | relFreqList = relativeFrequencyTable(countList,args[dict['name']],args[dict['html_resource']]) | +
| + | relWeightList = weightedFrequencyTable(weightList,args[dict['name']],args[dict['html_resource']]) | +
| + | createStackedBar(args[dict['name']],relWeightList, args[dict['strain']],args[dict['pdfexport']],args[dict['html_resource']]) | +
| + | createHTML(args[dict['name']],args[dict['html_file']],args[dict['html_resource']], relFreqList, relWeightList) | +
| + | + | +
| + | if __name__ == "__main__": | +
| + | #print("Commencing Transcript Mapping") | +
| + | #transcriptMapping("T_Test", "Transcripts.1","Transcripts.2") | +
| + | #print("Processimg Sam Files") | +
| + | #processSamFiles("T_Test") | +
| + | #print("Assessing Transcript Abundance") | +
| + | #transcriptAbundance("T_Test") | +
| + | #print ("Converting to Fasta Subset") | +
| + | #cuff_df = convertToFasta("T_Test") | +
| + | #print("Commencing HMMer search") | +
| + | #countList, weightList = HMMerMotifSearch("T_Test",cuff_df) | +
| + | #relativeFrequencyTable(countList,'T_Test') | +
| + | #weightedFrequencyTable(weightList,'T_Test') | +
| + | relFreqList = [0.111842105,0.059210526,0.026315789,0.013157895, | +
| + | 0.006578947,0.013157895,0.032894737,0.019736842, | +
| + | 0.039473684,0.046052632,0.217105263,0.065789474, | +
| + | 0.151315789,0.059210526,0.138157895] | +
| + | + | +
| + | relWeightList = [0.07532571,0.05900545,0.009601452,0.042357532,0.01236219,0.001675663,0.04109726, | +
| + | 0.097464248,0.057491666,0.05826875,0.279457473,0.070004772,0.065329007,0.085361298,0.045197529] | +
| + | + | +
| + | createStackedBar('T_Test',relWeightList, 'Tc148','PDF_Yes','results') | +
| + | createHTML("t_test","results/t_test.html","results",relFreqList,relWeightList) | +


