# HG changeset patch # User johnheap # Date 1559591979 14400 # Node ID 5e346d75ccf3e96be2f880317167a732236a83db # Parent c4e87b277576abb34f7484da45e355017a7b613c Uploaded diff -r c4e87b277576 -r 5e346d75ccf3 Tryp_T.py --- a/Tryp_T.py Mon Jun 03 15:58:48 2019 -0400 +++ b/Tryp_T.py Mon Jun 03 15:59:39 2019 -0400 @@ -1,2261 +1,345 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VAPPER-Galaxy/Tryp_T.py at master · johnheap/VAPPER-Galaxy · GitHub - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- Skip to content -
- - - - - - - - -
- -
- - -
- -
- - - -
-
-
- - - - - - - - - - - -
-
- - - - - - - - Permalink - - - - - -
- - -
- - Branch: - master - - - - - - - -
- -
- - Find file - - - Copy path - -
-
- - -
- - Find file - - - Copy path - -
-
- - - - -
- Fetching contributors… -
- -
- - Cannot retrieve contributors at this time -
-
- + #argString = "samtools index "+bugName+".sorted "+inputname+".sorted.bai" + argString = "samtools index "+samName+".sorted "+samName+".sorted.bai"+quietString + #print("argstring = " + argString) + returncode = subprocess.call(argString, shell=True) -
- -
- -
- 346 lines (301 sloc) - - 15 KB -
- -
- -
- Raw - Blame - History -
+def transcriptAbundance(inputname, strain): + dir_path = os.path.dirname(os.path.realpath(__file__)) + refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # defasult + if strain == "Tc148": + refName = dir_path + "/data/Reference/ORFAnnotation.gtf" + if strain == "IL3000": + refName = dir_path + "/data/Reference/IL3000.gtf" + #argString = "cufflinks -G Reference/IL3000.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted" + #argString = "cufflinks -G Reference/ORFAnnotation.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted" + argString = "cufflinks -q -G "+refName+" -o "+inputname+".cuff -u -p 8 "+inputname+".sorted"+quietString + returncode = subprocess.call(argString, shell = True) -
+def convertToFasta(inputName, strain): #equivalent to Sara's awk scripte + dir_path = os.path.dirname(os.path.realpath(__file__)) + refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # default + if strain == "Tc148": + refName = dir_path + "/data/Reference/148_prot.fasta" + if strain == "IL3000": + refName = dir_path + "/data/Reference/IL3000_prot.fasta" + + cuff_df = pd.read_csv(inputName+".cuff/genes.fpkm_tracking", sep='\t') + cuff_df = cuff_df[(cuff_df['FPKM'] > 0)] + cuff_df.to_csv("cuffTest.csv") + gene_id_List = cuff_df['gene_id'].tolist() + + #print(gene_id_List) + #print ("Found from 8880="+str(found)) - - -
-
-
- - + # need to load in IL3000_prot.fasta + # for each line with >TcIL3000_1_1940 + # search within cuff_df[gene_id] for match + # add it to the outfile. (need to save it as used by hmmer later + number = 0 + all = 0 + with open(inputName+"_6frame.fas", 'w') as outfile: + ref = open(refName,'r') + #ref = open(r"Reference/IL3000_prot.fasta",'r') + n = 0 + line = ref.readline() + while line: + if line[0] == '>': + all = all+1 + ln = line[1:] #remove > + ln = ln.rstrip() #remove /n /r etc + #print (ln) + if ln in gene_id_List: + number = number+1 + outfile.write(line) + line = ref.readline() + if line: + while line[0] != '>': + outfile.write(line) + line=ref.readline() + if not line: + break; + else: + line = ref.readline() + else: + line =ref.readline() + ref.close() + print(str(len(gene_id_List))+":"+str(number)+" from "+str(all)) + return cuff_df -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
"""
* Copyright 2018 University of Liverpool
* Author: John Heap, Computational Biology Facility, UoL
* Based on original scripts of Sara Silva Pereira, Institute of Infection and Global Health, UoL
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
"""
-
-
import subprocess
import pandas as pd
import re
import os
import sys
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
-
pList = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10', 'P11', 'P12', 'P13', 'P14', 'P15']
quietString = "" #"">> Vap_log.txt 2>&1"
def transcriptMapping(inputname, strain, forwardFN,reverseFN):
#where is our Reference data -
dir_path = os.path.dirname(os.path.realpath(__file__))
refName = dir_path+"/data/Reference/Tc148" #default
if strain == "Tc148":
refName = dir_path+"/data/Reference/Tc148"
if strain == "IL3000":
refName = dir_path+"/data/Reference/IL3000"
#argString = "bowtie2 -x Refe4rence/IL3000 -1 data/"+forwardFN+" -2 data/"+reverseFN+" -S "+inputname+".sam" #>log.txt
#argString = "bowtie2 -x Reference/Tc148 -1 data/"+forwardFN+" -2 data/"+reverseFN+" -S "+inputname+".sam" #>log.txt
argString = "bowtie2 -x "+refName+" -1 "+forwardFN+" -2 "+reverseFN+" -S "+inputname+".sam"+quietString #>log.txt
#print(argString)
returncode = subprocess.call(argString, shell=True)
-
def processSamFiles(inputname):
#debug use a mapping sam file we have already found
#dir_path = os.path.dirname(os.path.realpath(__file__))
#bugName = dir_path+"/data/T_Test" #defasult
-
cur_path = os.getcwd()
samName = cur_path+"/"+inputname
-
#argString = "samtools view -bS "+bugName+" > "+inputname+".bam"
argString = "samtools view -bS "+inputname+".sam > "+samName+".bam"+quietString
#print(argString)
returncode = subprocess.call(argString, shell=True)
-
-
#argString = "samtools sort "+bugName+" -o "+inputname+".sorted"
argString = "samtools sort "+samName+".bam -o "+samName+".sorted"+quietString
#print("argstring = "+argString)
returncode = subprocess.call(argString, shell=True)
-
#argString = "samtools index "+bugName+".sorted "+inputname+".sorted.bai"
argString = "samtools index "+samName+".sorted "+samName+".sorted.bai"+quietString
#print("argstring = " + argString)
returncode = subprocess.call(argString, shell=True)
-
-
-
-
def transcriptAbundance(inputname, strain):
dir_path = os.path.dirname(os.path.realpath(__file__))
refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # defasult
if strain == "Tc148":
refName = dir_path + "/data/Reference/ORFAnnotation.gtf"
if strain == "IL3000":
refName = dir_path + "/data/Reference/IL3000.gtf"
#argString = "cufflinks -G Reference/IL3000.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted"
#argString = "cufflinks -G Reference/ORFAnnotation.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted"
argString = "cufflinks -q -G "+refName+" -o "+inputname+".cuff -u -p 8 "+inputname+".sorted"+quietString
returncode = subprocess.call(argString, shell = True)
-
-
def convertToFasta(inputName, strain): #equivalent to Sara's awk scripte
dir_path = os.path.dirname(os.path.realpath(__file__))
refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # default
if strain == "Tc148":
refName = dir_path + "/data/Reference/148_prot.fasta"
if strain == "IL3000":
refName = dir_path + "/data/Reference/IL3000_prot.fasta"
-
cuff_df = pd.read_csv(inputName+".cuff/genes.fpkm_tracking", sep='\t')
cuff_df = cuff_df[(cuff_df['FPKM'] > 0)]
cuff_df.to_csv("cuffTest.csv")
gene_id_List = cuff_df['gene_id'].tolist()
-
#print(gene_id_List)
#print ("Found from 8880="+str(found))
-
# need to load in IL3000_prot.fasta
# for each line with >TcIL3000_1_1940
# search within cuff_df[gene_id] for match
# add it to the outfile. (need to save it as used by hmmer later
number = 0
all = 0
with open(inputName+"_6frame.fas", 'w') as outfile:
ref = open(refName,'r')
#ref = open(r"Reference/IL3000_prot.fasta",'r')
n = 0
line = ref.readline()
while line:
if line[0] == '>':
all = all+1
ln = line[1:] #remove >
ln = ln.rstrip() #remove /n /r etc
#print (ln)
if ln in gene_id_List:
number = number+1
outfile.write(line)
line = ref.readline()
if line:
while line[0] != '>':
outfile.write(line)
line=ref.readline()
if not line:
break;
else:
line = ref.readline()
else:
line =ref.readline()
ref.close()
print(str(len(gene_id_List))+":"+str(number)+" from "+str(all))
return cuff_df
-
def HMMerMotifSearch(name, strain, cuff_df):
motifs = ['1', '2a', '2b', '3', '4a', '4b', '4c', '5', '6', '7', '8a', '8b', '9a', '9b',
'9c', '10a', '10b', '11a', '11b', '12', '13a', '13b', '13c', '13d', '14', '15a', '15b', '15c']
dir_path = os.path.dirname(os.path.realpath(__file__))
phylopath = dir_path + "/data/Motifs/Phylotype"
lineCounts = []
compoundList = []
for m in motifs:
argString = "hmmsearch "+phylopath + m + ".hmm " + name + "_6frame.fas > Phy" + m + ".out"
print(argString)
subprocess.call(argString, shell=True)
hmmResult = open("Phy" + m + ".out", 'r')
regex = r"Tc148[0-9]{1,8}"
if strain == "Tc148":
regex = r"Tc148[0-9]{1,8}"
if strain == "IL3000":
regex = r"TcIL3000_[0-9]{1,4}_[0-9]{1,5}"
n = 0
outList = []
for line in hmmResult:
m = re.search(regex, line)
if m:
outList.append(""+m.group())
n += 1
if re.search(r"inclusion", line):
print("inclusion threshold reached")
break
compoundList.append(outList)
lineCounts.append(n)
hmmResult.close()
#print(lineCounts)
-
#print(cuff_df)
concatGroups = [1, 2, 1, 3, 1, 1, 1, 2, 3, 2, 2, 1, 4, 1, 3]
countList = []
weightList = []
countIndex = 0
totalCount = 0
totalWeigth = 0
for c in concatGroups:
a = []
weight = []
for n in range(0, c):
a = a + compoundList.pop(0)
t = set(a)
countList.append(len(t))
wa = 0
for w in t:
wt = cuff_df.loc[cuff_df['gene_id'] == w, 'FPKM'].iloc[0]
#print(w)
#print(wt)
wa = wa+wt
weightList.append(wa)
totalWeigth+=wa
totalCount += len(t)
countList.append(totalCount)
weightList.append(totalWeigth)
#print(countList)
#print("--------")
#print(weightList)
#print("--------")
return countList,weightList
-
def relativeFrequencyTable(countList, name, htmlresource):
relFreqList = []
c = float(countList[15])
for i in range(0, 15):
relFreqList.append(countList[i] / c)
-
data = {'Phylotype': pList, 'Relative Frequency': relFreqList}
relFreq_df = pd.DataFrame(data)
j_fname = htmlresource+ "/" + name + "_t_relative_frequency.csv"
relFreq_df.to_csv(j_fname)
return relFreqList # 0-14 = p1-p15 counts [15] = total counts
-
-
def weightedFrequencyTable(countList, name, htmlresource):
relFreqList = []
c = float(countList[15])
for i in range(0, 15):
relFreqList.append(countList[i] / c)
-
data = {'Phylotype': pList, 'Weighted Frequency': relFreqList}
relFreq_df = pd.DataFrame(data)
j_fname = htmlresource+ "/" + name + "_t_weighted_frequency.csv"
relFreq_df.to_csv(j_fname)
return relFreqList # 0-14 = p1-p15 counts [15] = total counts
-
-
-
def createStackedBar(name,freqList,strain,pdf,html_resource):
palette = ["#0000ff", "#6495ed", "#00ffff", "#caff70",
"#228b22", "#528b8b", "#00ff00", "#a52a2a",
"#ff0000", "#ffff00", "#ffa500", "#ff1493",
"#9400d3", "#bebebe", "#000000", "#ff00ff"]
-
VAP_148 = [0.072, 0.032, 0.032, 0.004, 0.007,
0.005, 0.202, 0.004, 0.006, 0.014,
0.130, 0.133, 0.054, 0.039, 0.265]
-
VAP_IL3000 = [0.073, 0.040, 0.049, 0.018, 0.060,
0.055, 0.054, 0.025, 0.012, 0.060,
0.142, 0.100, 0.061, 0.078, 0.172]
cmap = plt.cm.get_cmap('tab20')
palette = [cmap(i) for i in range(cmap.N)]
-
if strain == "Tc148":
VAPtable = VAP_148
VAPname='Tc148\nGenome VAP'
if strain == "IL3000":
VAPtable = VAP_IL3000
VAPname= 'IL3000\nGenome VAP'
width = 0.35 # the width of the bars: can also be len(x) sequence
plots = []
fpos = 0
vpos = 0
for p in range(0, 15):
tp = plt.bar(0, freqList[p], width, color= palette[p], bottom = fpos)
fpos +=freqList[p]
-
tp = plt.bar(1, VAPtable[p], width, color= palette[p], bottom = vpos)
vpos +=VAPtable[p]
-
plots.append(tp)
plt.xticks([0,1],[name,VAPname])
plt.legend(plots[::-1],['p15','p14','p13','p12','p11','p10','p9','p8','p7','p6','p5','p4','p3','p2','p1'])
title = "Figure Legend: The transcriptomic Variant Antigen Profile of $\itTrypanosoma$ $\itcongolense$ estimated as phylotype " \
"proportion adjusted for transcript abundance and the reference genomic Variant Antigen Profile. " \
"\nData was produced with the 'Variant Antigen Profiler' (Silva Pereira et al., 2019)."
#plt.title(title, wrap="True")
#plt.text(-0.2, -0.05, title, va="top", transform=ax.transAxes, wrap="True")
plt.text(-0.3, -0.15, title, va="top", wrap="True")
plt.tight_layout(pad=1.5)
plt.subplots_adjust(bottom = 0.3,top=0.99,left=0.125,right=0.9,hspace=0.2,wspace=0.2)
-
plt.savefig(html_resource + "/stackedbar.png")
if pdf == 'PDF_Yes':
plt.savefig(html_resource + "/stackedbar.pdf")
#plt.show()
-
-
def createHTML(name,htmlfn,htmlresource,freqList,weightList):
#assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource
htmlString = r"<html><title>T.congolense VAP</title><body><div style='text-align:center'><h2><i>Trypanosoma congolense</i> Variant Antigen Profile</h2><h3>"
htmlString += name
htmlString += r"<br>Transcriptomic Analysis</h3></p>"
htmlString += "<p style = 'margin-left:20%; margin-right:20%'>Table Legend: Variant Antigen Profiles of a transcriptome of <i>Trypanosoma congolense</i> estimated as phylotype proportion. " \
"Weighted frequency refers to the phylotype proportion based transcript abundance. " \
"Data was produced with the 'Variant Antigen Profiler' (Silva Pereira et al., 2019).</p> "
htmlString += r"<style> table, th, tr, td {border: 1px solid black; border-collapse: collapse;}</style>"
-
htmlString += r"<table style='width:50%;margin-left:25%;text-align:center'><tr><th>Phylotype</th><th>Relative Frequency</th><th>Weighted Frequency</th></tr>"
tabString = ""
# flush out table with correct values
for i in range(0, 15):
f = format(freqList[i], '.4f')
w = format(weightList[i], '.4f')
tabString += "<tr><td>phy" + str(i + 1) + "</td><td>" + f + "</td><td>" + w + "</td></tr>"
htmlString += tabString + "</table><br><br><br><br><br>"
htmlString += r"<p> <h3>Stacked Bar chart of Phylotype Frequency</h3> The 'weighted' relative frequency of each phylotype alongside the VAP of selected strain.</p>"
imgString = r"<img src = 'stackedbar.png' alt='Stacked bar chart of phylotype variation' style='max-width:100%'><br><br>"
htmlString += imgString
-
# htmlString += r"<p><h3>The Deviation Heat Map and Dendogram</h3>The phylotype variation expressed as the deviation from your sample mean compared to the model dataset</p>"
# imgString = r"<img src = 'dheatmap.png' alt='Deviation Heatmap' style='max-width:100%'><br><br>"
# htmlString += imgString
-
# htmlString += r"<p><h3>The Variation PCA plot</h3>PCA analysis corresponding to absolute variation. Colour coded according to location</p>"
# imgString = r"<img src = 'vapPCA.png' alt='PCA Analysis' style='max-width:100%'><br><br>"
# htmlString += imgString + r"</div></body></html>"
-
with open(htmlfn, "w") as htmlfile:
htmlfile.write(htmlString)
-
#argdict = {'name':2, 'pdfexport': 3, 'strain': 4, 'forward': 5, 'reverse': 6, 'html_file': 7, 'html_resource': 8}
def transcriptomicProcess(args,dict):
transcriptMapping(args[dict['name']], args[dict['strain']], args[dict['forward']], args[dict['reverse']]) #uses bowtie
processSamFiles(args[dict['name']]) #uses samtools
transcriptAbundance(args[dict['name']],args[dict['strain']]) #uses cufflinks -> ?.cuff/*.*
cuff_df = convertToFasta(args[dict['name']],args[dict['strain']])
countList, weightList = HMMerMotifSearch(args[dict['name']],args[dict['strain']], cuff_df)
relFreqList = relativeFrequencyTable(countList,args[dict['name']],args[dict['html_resource']])
relWeightList = weightedFrequencyTable(weightList,args[dict['name']],args[dict['html_resource']])
createStackedBar(args[dict['name']],relWeightList, args[dict['strain']],args[dict['pdfexport']],args[dict['html_resource']])
createHTML(args[dict['name']],args[dict['html_file']],args[dict['html_resource']], relFreqList, relWeightList)
-
if __name__ == "__main__":
#print("Commencing Transcript Mapping")
#transcriptMapping("T_Test", "Transcripts.1","Transcripts.2")
#print("Processimg Sam Files")
#processSamFiles("T_Test")
#print("Assessing Transcript Abundance")
#transcriptAbundance("T_Test")
#print ("Converting to Fasta Subset")
#cuff_df = convertToFasta("T_Test")
#print("Commencing HMMer search")
#countList, weightList = HMMerMotifSearch("T_Test",cuff_df)
#relativeFrequencyTable(countList,'T_Test')
#weightedFrequencyTable(weightList,'T_Test')
relFreqList = [0.111842105,0.059210526,0.026315789,0.013157895,
0.006578947,0.013157895,0.032894737,0.019736842,
0.039473684,0.046052632,0.217105263,0.065789474,
0.151315789,0.059210526,0.138157895]
-
relWeightList = [0.07532571,0.05900545,0.009601452,0.042357532,0.01236219,0.001675663,0.04109726,
0.097464248,0.057491666,0.05826875,0.279457473,0.070004772,0.065329007,0.085361298,0.045197529]
-
createStackedBar('T_Test',relWeightList, 'Tc148','PDF_Yes','results')
createHTML("t_test","results/t_test.html","results",relFreqList,relWeightList)
+def HMMerMotifSearch(name, strain, cuff_df): + motifs = ['1', '2a', '2b', '3', '4a', '4b', '4c', '5', '6', '7', '8a', '8b', '9a', '9b', + '9c', '10a', '10b', '11a', '11b', '12', '13a', '13b', '13c', '13d', '14', '15a', '15b', '15c'] + dir_path = os.path.dirname(os.path.realpath(__file__)) + phylopath = dir_path + "/data/Motifs/Phylotype" + lineCounts = [] + compoundList = [] + for m in motifs: + argString = "hmmsearch "+phylopath + m + ".hmm " + name + "_6frame.fas > Phy" + m + ".out" + print(argString) + subprocess.call(argString, shell=True) + hmmResult = open("Phy" + m + ".out", 'r') + regex = r"Tc148[0-9]{1,8}" + if strain == "Tc148": + regex = r"Tc148[0-9]{1,8}" + if strain == "IL3000": + regex = r"TcIL3000_[0-9]{1,4}_[0-9]{1,5}" + n = 0 + outList = [] + for line in hmmResult: + m = re.search(regex, line) + if m: + outList.append(""+m.group()) + n += 1 + if re.search(r"inclusion", line): + print("inclusion threshold reached") + break + compoundList.append(outList) + lineCounts.append(n) + hmmResult.close() + #print(lineCounts) - + #print(cuff_df) + concatGroups = [1, 2, 1, 3, 1, 1, 1, 2, 3, 2, 2, 1, 4, 1, 3] + countList = [] + weightList = [] + countIndex = 0 + totalCount = 0 + totalWeigth = 0 + for c in concatGroups: + a = [] + weight = [] + for n in range(0, c): + a = a + compoundList.pop(0) + t = set(a) + countList.append(len(t)) + wa = 0 + for w in t: + wt = cuff_df.loc[cuff_df['gene_id'] == w, 'FPKM'].iloc[0] + #print(w) + #print(wt) + wa = wa+wt + weightList.append(wa) + totalWeigth+=wa + totalCount += len(t) + countList.append(totalCount) + weightList.append(totalWeigth) + #print(countList) + #print("--------") + #print(weightList) + #print("--------") + return countList,weightList -
+def relativeFrequencyTable(countList, name, htmlresource): + relFreqList = [] + c = float(countList[15]) + for i in range(0, 15): + relFreqList.append(countList[i] / c) -
- - + data = {'Phylotype': pList, 'Relative Frequency': relFreqList} + relFreq_df = pd.DataFrame(data) + j_fname = htmlresource+ "/" + name + "_t_relative_frequency.csv" + relFreq_df.to_csv(j_fname) + return relFreqList # 0-14 = p1-p15 counts [15] = total counts -
- - -
- - -
-
+ +def weightedFrequencyTable(countList, name, htmlresource): + relFreqList = [] + c = float(countList[15]) + for i in range(0, 15): + relFreqList.append(countList[i] / c) + + data = {'Phylotype': pList, 'Weighted Frequency': relFreqList} + relFreq_df = pd.DataFrame(data) + j_fname = htmlresource+ "/" + name + "_t_weighted_frequency.csv" + relFreq_df.to_csv(j_fname) + return relFreqList # 0-14 = p1-p15 counts [15] = total counts -
- -
+def createStackedBar(name,freqList,strain,pdf,html_resource): + palette = ["#0000ff", "#6495ed", "#00ffff", "#caff70", + "#228b22", "#528b8b", "#00ff00", "#a52a2a", + "#ff0000", "#ffff00", "#ffa500", "#ff1493", + "#9400d3", "#bebebe", "#000000", "#ff00ff"] -
-
- + VAP_148 = [0.072, 0.032, 0.032, 0.004, 0.007, + 0.005, 0.202, 0.004, 0.006, 0.014, + 0.130, 0.133, 0.054, 0.039, 0.265] -
+ VAP_IL3000 = [0.073, 0.040, 0.049, 0.018, 0.060, + 0.055, 0.054, 0.025, 0.012, 0.060, + 0.142, 0.100, 0.061, 0.078, 0.172] + cmap = plt.cm.get_cmap('tab20') + palette = [cmap(i) for i in range(cmap.N)] - - - + plt.savefig(html_resource + "/stackedbar.png") + if pdf == 'PDF_Yes': + plt.savefig(html_resource + "/stackedbar.pdf") + #plt.show() -
- - - You can’t perform that action at this time. -
+def createHTML(name,htmlfn,htmlresource,freqList,weightList): + #assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource + htmlString = r"T.congolense VAP

Trypanosoma congolense Variant Antigen Profile

" + htmlString += name + htmlString += r"
Transcriptomic Analysis

" + htmlString += "

Table Legend: Variant Antigen Profiles of a transcriptome of Trypanosoma congolense estimated as phylotype proportion. " \ + "Weighted frequency refers to the phylotype proportion based transcript abundance. " \ + "Data was produced with the 'Variant Antigen Profiler' (Silva Pereira et al., 2019).

" + htmlString += r"" + htmlString += r"" + tabString = "" + # flush out table with correct values + for i in range(0, 15): + f = format(freqList[i], '.4f') + w = format(weightList[i], '.4f') + tabString += "" + htmlString += tabString + "
PhylotypeRelative FrequencyWeighted Frequency
phy" + str(i + 1) + "" + f + "" + w + "





" + htmlString += r"

Stacked Bar chart of Phylotype Frequency

The 'weighted' relative frequency of each phylotype alongside the VAP of selected strain.

" + imgString = r"Stacked bar chart of phylotype variation

" + htmlString += imgString + +# htmlString += r"

The Deviation Heat Map and Dendogram

The phylotype variation expressed as the deviation from your sample mean compared to the model dataset

" +# imgString = r"Deviation Heatmap

" +# htmlString += imgString + +# htmlString += r"

The Variation PCA plot

PCA analysis corresponding to absolute variation. Colour coded according to location

" +# imgString = r"PCA Analysis

" +# htmlString += imgString + r"
" + + with open(htmlfn, "w") as htmlfile: + htmlfile.write(htmlString) - - - - - - - - - +#argdict = {'name':2, 'pdfexport': 3, 'strain': 4, 'forward': 5, 'reverse': 6, 'html_file': 7, 'html_resource': 8} +def transcriptomicProcess(args,dict): + transcriptMapping(args[dict['name']], args[dict['strain']], args[dict['forward']], args[dict['reverse']]) #uses bowtie + processSamFiles(args[dict['name']]) #uses samtools + transcriptAbundance(args[dict['name']],args[dict['strain']]) #uses cufflinks -> ?.cuff/*.* + cuff_df = convertToFasta(args[dict['name']],args[dict['strain']]) + countList, weightList = HMMerMotifSearch(args[dict['name']],args[dict['strain']], cuff_df) + relFreqList = relativeFrequencyTable(countList,args[dict['name']],args[dict['html_resource']]) + relWeightList = weightedFrequencyTable(weightList,args[dict['name']],args[dict['html_resource']]) + createStackedBar(args[dict['name']],relWeightList, args[dict['strain']],args[dict['pdfexport']],args[dict['html_resource']]) + createHTML(args[dict['name']],args[dict['html_file']],args[dict['html_resource']], relFreqList, relWeightList) - +if __name__ == "__main__": + #print("Commencing Transcript Mapping") + #transcriptMapping("T_Test", "Transcripts.1","Transcripts.2") + #print("Processimg Sam Files") + #processSamFiles("T_Test") + #print("Assessing Transcript Abundance") + #transcriptAbundance("T_Test") + #print ("Converting to Fasta Subset") + #cuff_df = convertToFasta("T_Test") + #print("Commencing HMMer search") + #countList, weightList = HMMerMotifSearch("T_Test",cuff_df) + #relativeFrequencyTable(countList,'T_Test') + #weightedFrequencyTable(weightList,'T_Test') + relFreqList = [0.111842105,0.059210526,0.026315789,0.013157895, + 0.006578947,0.013157895,0.032894737,0.019736842, + 0.039473684,0.046052632,0.217105263,0.065789474, + 0.151315789,0.059210526,0.138157895] -
+ relWeightList = [0.07532571,0.05900545,0.009601452,0.042357532,0.01236219,0.001675663,0.04109726, + 0.097464248,0.057491666,0.05826875,0.279457473,0.070004772,0.065329007,0.085361298,0.045197529] - - - + createStackedBar('T_Test',relWeightList, 'Tc148','PDF_Yes','results') + createHTML("t_test","results/t_test.html","results",relFreqList,relWeightList)