4
|
1 """
|
|
2 * Copyright 2018 University of Liverpool
|
|
3 * Author: John Heap, Computational Biology Facility, UoL
|
|
4 * Based on original scripts of Sara Silva Pereira, Institute of Infection and Global Health, UoL
|
|
5 *
|
|
6 * Licensed under the Apache License, Version 2.0 (the "License");
|
|
7 * you may not use this file except in compliance with the License.
|
|
8 * You may obtain a copy of the License at
|
|
9 *
|
|
10 * http://www.apache.org/licenses/LICENSE-2.0
|
|
11 *
|
|
12 * Unless required by applicable law or agreed to in writing, software
|
|
13 * distributed under the License is distributed on an "AS IS" BASIS,
|
|
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15 * See the License for the specific language governing permissions and
|
|
16 * limitations under the License.
|
|
17 *
|
|
18 """
|
|
19
|
|
20 import subprocess
|
|
21 import re
|
|
22 import os
|
|
23 import sys
|
|
24 import shutil
|
|
25 import pandas as pd
|
|
26 import numpy as np
|
|
27 import matplotlib as mpl
|
|
28 mpl.use('Agg')
|
|
29 import matplotlib.pyplot as plt
|
|
30 from matplotlib.mlab import PCA
|
|
31 import seaborn as sns
|
|
32
|
|
33 # some globals for convenience
|
|
34
|
|
35 pList = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10', 'P11', 'P12', 'P13', 'P14', 'P15']
|
|
36
|
|
37 quietString = "" #" >>"+os.path.dirname(os.path.realpath(__file__))+"/log/Vap_log.txt 2>&1"
|
|
38
|
|
39 def assembleWithVelvet(name, kmers, inslen, covcut, fastq1name,fastq2name):
|
|
40 #argString = "velveth " + name + "_k65 65 -shortPaired -fastq " + name + "_R1.fastq " + name + "_R2.fastq"
|
|
41 argString = "velveth " + name + "_k"+ kmers+" "+ kmers + " -shortPaired -fastq " + fastq1name+" "+fastq2name+quietString
|
|
42 print(argString)
|
|
43 returncode = subprocess.call(argString, shell=True)
|
|
44 if returncode != 0:
|
|
45 return "Error in velveth"
|
|
46 argString = "velvetg " + name + "_k"+kmers+" -exp_cov auto -ins_length "+inslen+" -cov_cutoff "+covcut+" -clean yes -ins_length_sd 50 -min_pair_count 20"+quietString
|
|
47 #argString = "velvetg " + name + "_k65 -exp_cov auto -ins_length 400 -cov_cutoff 5 -clean yes -ins_length_sd 50 -min_pair_count 20"+quietString
|
|
48 print(argString)
|
|
49 returncode = subprocess.call(argString, shell = True)
|
|
50 if returncode != 0:
|
|
51 return "Error in velvetg"
|
|
52 shutil.copyfile(name + "_k"+kmers+"//contigs.fa",name + ".fa") # my $namechange = "mv ".$input."_k65/contigs.fa ".$input.".fa";
|
|
53 return "ok"
|
|
54
|
|
55 def contigTranslation(name):
|
|
56 argString = "transeq " + name + ".fa " + name + "_6frame.fas -frame=6 " #+quietString
|
|
57 print(argString)
|
|
58 returncode = subprocess.call(argString, shell=True)
|
|
59 #subprocess.call('ls -l *.fa', shell = True)
|
|
60 #sys.exit(1)
|
|
61 #if returncode != 0:
|
|
62 # return "Error in Transeq"
|
|
63 #return 'ok'
|
|
64
|
|
65
|
|
66 def HMMerMotifSearch(name):
|
|
67 motifs = ['1', '2a', '2b', '3', '4a', '4b', '4c', '5', '6', '7', '8a', '8b', '9a', '9b',
|
|
68 '9c', '10a', '10b', '11a', '11b', '12', '13a', '13b', '13c', '13d', '14', '15a', '15b', '15c']
|
|
69 lineCounts = []
|
|
70 compoundList = []
|
|
71 dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
72 phylopath = dir_path + "/data/Motifs/Phylotype"
|
|
73 for m in motifs:
|
|
74 argString = "hmmsearch " + phylopath + m + ".hmm " + name + "_6frame.fas > Phy" + m + ".out" # +quietString
|
|
75 # argString = "hmmsearch "+phylopath + m + ".hmm " + dir_path+"/data/Test_6frame.fas > Phy" + m + ".out"
|
|
76 #print(argString)
|
|
77 subprocess.call(argString, shell=True)
|
|
78
|
|
79 hmmResult = open("Phy" + m + ".out", 'r')
|
|
80 tempout = open(dir_path + "/data/" + "Phy" + m + ".txt", 'w')
|
|
81 #regex = r"NODE_[0-9]{1,7}_length_[0-9]{1,7}_cov_[0-9]{1,10}.[0-9]{1,7}_[0-9]{1,2}"
|
|
82 n = 0
|
|
83 outList = []
|
|
84 for l in range(0,14):
|
|
85 hmmResult.readline() #hacky? miss out the first 14 lines. data we want starts on line 15
|
|
86
|
|
87
|
|
88 for line in hmmResult:
|
|
89 if re.search(r"inclusion", line):
|
|
90 #print("inclusion threshold reached")
|
|
91 break
|
|
92 if len(line) <= 1:
|
|
93 #print("end of data")
|
|
94 break
|
|
95 m = line[60:-1]
|
|
96 #print(m)
|
|
97 #tempout.write(m.group() + "\n")
|
|
98 outList.append("" + m + "\n")
|
|
99 n += 1
|
|
100 compoundList.append(outList)
|
|
101 lineCounts.append(n)
|
|
102 hmmResult.close()
|
|
103
|
|
104
|
|
105 print(lineCounts)
|
|
106 motifGroups = [['1'], ['2a', '2b'], ['3'], ['4a', '4b', '4c'], ['5'], ['6'], ['7'], ['8a', '8b'], ['9a', '9b',
|
|
107 '9c'],
|
|
108 ['10a', '10b'], ['11a', '11b'], ['12'], ['13a', '13b', '13c', '13d'], ['14'], ['15a', '15b', '15c']]
|
|
109 concatGroups = [1, 2, 1, 3, 1, 1, 1, 2, 3, 2, 2, 1, 4, 1, 3]
|
|
110 countList = []
|
|
111 countIndex = 0
|
|
112 totalCount = 0
|
|
113
|
|
114 for c in concatGroups:
|
|
115 a = []
|
|
116 for n in range(0, c):
|
|
117 a = a + compoundList.pop(0)
|
|
118 t = set(a)
|
|
119 countList.append(len(t))
|
|
120 totalCount += len(t)
|
|
121 countList.append(totalCount)
|
|
122 #print(countList)
|
|
123 #print("--------")
|
|
124 return countList
|
|
125
|
|
126 """
|
|
127 def HMMerMotifSearch(name):
|
|
128 motifs = ['1', '2a', '2b', '3', '4a', '4b', '4c', '5', '6', '7', '8a', '8b', '9a', '9b',
|
|
129 '9c', '10a', '10b', '11a', '11b', '12', '13a', '13b', '13c', '13d', '14', '15a', '15b', '15c']
|
|
130 lineCounts = []
|
|
131 compoundList = []
|
|
132 dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
133 phylopath = dir_path+"/data/Motifs/Phylotype"
|
|
134 for m in motifs:
|
|
135 argString = "hmmsearch "+phylopath + m + ".hmm " + name + "_6frame.fas > Phy" + m + ".out" #+quietString
|
|
136 #argString = "hmmsearch "+phylopath + m + ".hmm " + dir_path+"/data/Test_6frame.fas > Phy" + m + ".out"
|
|
137 print(argString)
|
|
138 subprocess.call(argString, shell=True)
|
|
139
|
|
140 hmmResult = open("Phy" + m + ".out", 'r')
|
|
141 tempout = open(dir_path+"/data/"+"Phy" + m + ".txt", 'w')
|
|
142 regex = r"NODE_[0-9]{1,7}_length_[0-9]{1,7}_cov_[0-9]{1,10}.[0-9]{1,7}_[0-9]{1,2}"
|
|
143 n = 0
|
|
144 outList = []
|
|
145 for line in hmmResult:
|
|
146 m = re.search(regex, line)
|
|
147 if m:
|
|
148 tempout.write(m.group() + "\n")
|
|
149 outList.append(""+m.group()+"\n")
|
|
150 n += 1
|
|
151 if re.search(r"inclusion", line):
|
|
152 print("inclusion threshold reached")
|
|
153 break
|
|
154 compoundList.append(outList)
|
|
155 lineCounts.append(n)
|
|
156 hmmResult.close()
|
|
157 #tempout.close()
|
|
158 print(lineCounts)
|
|
159 motifGroups = [['1'], ['2a', '2b'], ['3'], ['4a', '4b', '4c'], ['5'], ['6'], ['7'], ['8a', '8b'], ['9a', '9b',
|
|
160 '9c'],
|
|
161 ['10a', '10b'], ['11a', '11b'], ['12'], ['13a', '13b', '13c', '13d'], ['14'], ['15a', '15b', '15c']]
|
|
162 concatGroups = [1, 2, 1, 3, 1, 1, 1, 2, 3, 2, 2, 1, 4, 1, 3]
|
|
163 countList = []
|
|
164 countIndex = 0
|
|
165 totalCount = 0
|
|
166
|
|
167 for c in concatGroups:
|
|
168 a = []
|
|
169 for n in range(0, c):
|
|
170 a = a + compoundList.pop(0)
|
|
171 t = set(a)
|
|
172 countList.append(len(t))
|
|
173 totalCount += len(t)
|
|
174 countList.append(totalCount)
|
|
175 print(countList)
|
|
176 print("--------")
|
|
177 return countList
|
|
178 """
|
|
179
|
|
180
|
|
181
|
|
182 def relativeFrequencyTable(countList, name, htmlresource):
|
|
183 relFreqList = []
|
|
184 c = float(countList[15])
|
|
185 if c == 0:
|
|
186 return [0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0]
|
|
187 for i in range(0, 15):
|
|
188 relFreqList.append(countList[i] / c)
|
|
189
|
|
190 data = {'Phylotype': pList, 'Relative Frequency': relFreqList}
|
|
191 relFreq_df = pd.DataFrame(data)
|
|
192 j_fname = htmlresource+"/" + name + "_relative_frequency.csv"
|
|
193 relFreq_df.to_csv(j_fname)
|
|
194 return relFreqList # 0-14 = p1-p15 counts [15] = total counts
|
|
195
|
|
196
|
|
197
|
|
198
|
|
199 def getDeviationFromMean(frequencyList, name, htmlresource):
|
|
200 devList = []
|
|
201 dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
202 j_fname = dir_path + "/data/congodata.csv"
|
|
203 #j_fname = r"data/congodata.csv"
|
|
204 congo_df = pd.read_csv(j_fname) # we get the means from congo_df
|
|
205 for p in range(0, 15):
|
|
206 m = congo_df[pList[p]].mean()
|
|
207 dev = -(m - frequencyList[p])
|
|
208 devList.append(dev)
|
|
209
|
|
210 data = {'Phylotype': pList, 'Deviation from Mean': devList}
|
|
211 dev_df = pd.DataFrame(data)
|
|
212 j_fname = htmlresource+"/" + name + "_deviation_from_mean.csv"
|
|
213 dev_df.to_csv(j_fname)
|
|
214 return devList
|
|
215
|
|
216
|
|
217 def relativeFrequencyHeatMap(name, freqList, pdf, htmlresource):
|
|
218 localFreqList = freqList[:]
|
|
219 localFreqList.insert(0, name)
|
|
220 dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
221 j_fname = dir_path+"/data/congodata.csv"
|
|
222 #print(dir_path)
|
|
223 congo_df = pd.read_csv(j_fname)
|
|
224 congo_df.drop('Colour', axis=1, inplace=True)
|
|
225 congo_df.loc[congo_df.index.max() + 1] = localFreqList
|
|
226 congo_df.set_index('Strain', inplace=True)
|
|
227
|
|
228 cg = sns.clustermap(congo_df, method='ward', cmap = "RdBu_r", col_cluster=False, yticklabels = congo_df.index.values)
|
|
229 plt.setp(cg.ax_heatmap.yaxis.get_ticklabels(), rotation=0, fontsize=8) # get y labels printed horizontally
|
|
230 ax=cg.ax_heatmap
|
|
231 title = "Variant Antigen Profiles of $\itTrypanosoma$ $\itcongolense$ estimated as the phylotype proportion across the\nsample cohort. "
|
|
232 title += "Dendrogram reflects the relationships amongst the VSG repertoires of each strain. "
|
|
233 title += "Strains\nwere isolated from multiple African countries as described in Silva Pereira et al. (2018)."
|
|
234 title += "\nData was produced with the 'Variant Antigen Profiler' (Silva Pereira and Jackson, 2018)."
|
|
235
|
|
236 #title = "Variant Antigen Profiles of Trypanosoma congolense estimated as the phylotype proportion across the sample cohort. Dendrogram reflects the relationships amongst the VSG repertoires of each strain. Strains were isolated from multiple African countries as described in Silva Pereira et al. (2018). Data was produced with the 'Variant Antigen Profiler' (Silva Pereira and Jackson, 2018)."
|
|
237 #ax.set_title(title, ha = "center", va = "bottom",wrap = "True")
|
|
238 #title = "Where is this!"
|
|
239 ax.text(-0.15,-0.05, title,va = "top",wrap = "True", transform = ax.transAxes )
|
|
240
|
|
241
|
|
242
|
|
243
|
|
244 # cg.dendrogram_col.linkage # linkage matrix for columns
|
|
245 # cg.dendrogram_row.linkage # linkage matrix for rows
|
|
246 #plt.savefig(r"results/" + name + "_heatmap.png")
|
|
247 plt.savefig(htmlresource+"/heatmap.png",bbox_inches='tight')
|
|
248 if pdf == 'PDF_Yes':
|
|
249 plt.savefig(htmlresource+"/heatmap.pdf", bbox_inches='tight')
|
|
250 #shutil.copyfile("heatmap.pdf",heatmapfn) #
|
|
251 #plt.show()
|
|
252
|
|
253 def deviationFromMeanHeatMap(name,devList, pdf, htmlresource):
|
|
254 localDevList = devList[:]
|
|
255 localDevList.insert(0, name)
|
|
256 dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
257 j_fname = dir_path+ "/data/congodata_deviationfromthemean.csv"
|
|
258 #j_fname = r"data/congodata_deviationfromthemean.csv"
|
|
259 congo_df = pd.read_csv(j_fname)
|
|
260 congo_df.drop('Colour', axis=1, inplace=True)
|
|
261 congo_df.loc[congo_df.index.max() + 1] = localDevList
|
|
262 congo_df.set_index('Strain', inplace=True)
|
|
263 cg = sns.clustermap(congo_df, method='ward',cmap = "RdBu_r", col_cluster=False, yticklabels = congo_df.index.values)
|
|
264 plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0, fontsize=8) # get y labels printed horizontally
|
|
265 ax = cg.ax_heatmap
|
|
266 title = "Variant Antigen Profiles of $\itTrypanosoma$ $\itcongolense$ expressed as the deviation from the mean phylotypes "
|
|
267 title +="\nproportions of the sample cohort. Dendrogram reflects the relationships amongst the VSG repertoires of "
|
|
268 title +="each \nstrain. Strains were isolated from multiple African countries as described in Silva Pereira et al. (2018)."
|
|
269 title +="\nData was produced with the 'Variant Antigen Profiler' (Silva Pereira and Jackson, 2018)."
|
|
270 #ax.set_title(title,ha = "center", va = "bottom",wrap = "True")
|
|
271 ax.text(-0.2, -0.05, title, va="top", transform=ax.transAxes, wrap="True")
|
|
272 plt.savefig(htmlresource+"/dheatmap.png",bbox_inches='tight')
|
|
273 if pdf == 'PDF_Yes':
|
|
274 plt.savefig(htmlresource+"/dheatmap.pdf", bbox_inches='tight')
|
|
275 #shutil.copyfile("dheatmap.pdf",dhmapfn)
|
|
276 #plt.show()
|
|
277
|
|
278
|
|
279 def plotPCA(name, freqList, pdf, htmlresource):
|
|
280 localFreqList = freqList[:]
|
|
281 localFreqList.insert(0, name)
|
|
282 localFreqList.append(name)
|
|
283 dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
284 j_fname = dir_path + "/data/congodata.csv"
|
|
285 #j_fname = r"data/congodata.csv"
|
|
286 congo_df = pd.read_csv(j_fname)
|
|
287 congo_df.loc[congo_df.index.max() + 1] = localFreqList
|
|
288 # print(congo_df.tail(2))
|
|
289 myColours = congo_df['Colour']
|
|
290 myCountries = congo_df.drop_duplicates('Colour')['Colour'].tolist()
|
|
291 # print(myCountries)
|
|
292 congo_df.drop('Colour', axis=1, inplace=True)
|
|
293 congo_df.set_index('Strain', inplace=True)
|
|
294 dataArray = congo_df.as_matrix()
|
|
295 pcaResult = PCA(dataArray)
|
|
296 # pcaResult.center(0)
|
|
297 # can't seem to find a simple way of prooducing a decent legend.
|
|
298 # going to seperate items in to different countires.
|
|
299 compoundList = []
|
|
300 for i in myCountries:
|
|
301 compoundList.append([])
|
|
302
|
|
303 i = 0
|
|
304 for item in pcaResult.Y:
|
|
305 col = myCountries.index(myColours[i])
|
|
306 compoundList[col].append(-item[0])
|
|
307 compoundList[col].append(item[1])
|
|
308 i = i + 1
|
|
309 cols = ['r', 'g', 'b', 'c', 'm', 'y', 'grey', 'k']
|
|
310
|
|
311 fig, ax = plt.subplots(figsize=(9, 6))
|
|
312 #plt.figure(num=1,figsize=(12, 6))
|
|
313 i = 0
|
|
314 for d in myCountries:
|
|
315 a = compoundList[i]
|
|
316 b = a[::2]
|
|
317 c = a[1::2]
|
|
318 ax.scatter(b, c, color=cols[i], label=myCountries[i])
|
|
319 i = i + 1
|
|
320 leg = ax.legend( bbox_to_anchor=(1.02,1.02), loc = "upper left") #move legend out of plot
|
|
321 title = "Principal Component Analysis of the Variant Antigen Profiles of $\itTrypanosoma$ $\itcongolense$. " \
|
|
322 "The plot reflects the\nrelationships amongst the VSG repertoires of each strain. Strains are color-coded " \
|
|
323 "by location of collection according\nto key. Strains were isolated from multiple African countries as described in Silva Pereira et al. (2018)."
|
|
324 title +="\nData was produced with the 'Variant Antigen Profiler' (Silva Pereira and Jackson, 2018)."
|
|
325 #plt.title(title, ha = "center", va = "bottom",wrap = "True")
|
|
326 tx = ax.text(-0.1, -0.07, title, va="top", transform=ax.transAxes, wrap="True")
|
|
327 #fig.add_axes([0,0.05,1.05,1.05])
|
|
328 #fig.tight_layout(rect=[0, 0.03, 1, 0.95])
|
|
329 fig.subplots_adjust(bottom = 0.3)
|
|
330
|
|
331 fig.savefig(htmlresource+"/vapPCA.png", bbox_extra_artists=(leg,tx), bbox_inches='tight')
|
|
332 #fig.savefig(htmlresource+"/vapPCA.png", bbox_extra_artists=(leg,))
|
|
333 if pdf == 'PDF_Yes':
|
|
334 fig.savefig(htmlresource+"/vapPCA.pdf",bbox_extra_artists=(leg,tx), bbox_inches='tight')
|
|
335 #shutil.copyfile("vapPCA.pdf",PCAfn) # my $namechange = "mv ".$input."_k65/contigs.fa ".$input.".fa";
|
|
336 #plt.show()
|
|
337
|
|
338 def createHTML(name,htmlfn,freqList,devList):
|
|
339 #assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource
|
|
340 htmlString = r"<html><title>T.congolense VAP</title><body><div style='text-align:center'><h2><i>Trypanosoma congolense</i> Variant Antigen Profile</h2><h3>"
|
|
341 htmlString += name
|
|
342 htmlString += r"<br/>Genomic Analysis</h3>"
|
|
343 htmlString += "<p style = 'margin-left:23%; margin-right:23%'>Table Legend: Variant Antigen Profiles of <i>Trypanosoma congolense</i> estimated as the phylotype proportion and as the deviation from the mean across the sample cohort.<br>" \
|
|
344 "Data was produced with the 'Variant Antigen Profiler' (Silva Pereira and Jackson, 2018).</p>"
|
|
345 htmlString += r"<style> table, th, tr, td {border: 1px solid black; border-collapse: collapse;}</style>"
|
|
346
|
|
347 htmlString += r"<table style='width:50%;margin-left:25%;text-align:center'><tr><th>Phylotype</th><th>Relative Frequency</th><th>Deviation from Mean</th></tr>"
|
|
348 tabString = ""
|
|
349 # flush out table with correct values
|
|
350 for i in range(0, 15):
|
|
351 f= format(freqList[i],'.4f')
|
|
352 d= format(devList[i],'.4f')
|
|
353 tabString += "<tr><td>phy" + str(i + 1) + "</td><td>" + f + "</td><td>" + d + "</td></tr>"
|
|
354 #tabString += "<tr><td>phy" + str(i + 1) + "</td><td>" + str(freqList[i]) + "</td><td>" + str(devList[i]) + "</td></tr>"
|
|
355 htmlString += tabString + "</table><br><br><br><br><br>"
|
|
356
|
|
357 htmlString += r"<h3>The Variation Heat Map and Dendrogram</h3><p>The absolute phylotype variation in the sample compared to model dataset.</p>"
|
|
358 imgString = r"<img src = 'heatmap.png' alt='Variation Heatmap' style='max-width:100%'><br><br>"
|
|
359 htmlString += imgString
|
|
360
|
|
361 htmlString += r"<br><br><br><br><h3>The Deviation Heat Map and Dendrogram</h3><p>The phylotype variation expressed as the deviation from your sample mean compared to the model dataset</p>"
|
|
362 imgString = r"<img src = 'dheatmap.png' alt='Deviation Heatmap' style='max-width:100%'><br><br>"
|
|
363 htmlString += imgString
|
|
364
|
|
365 htmlString += r"<br><br><br><br><h3>The Variation PCA plot</h3><p>PCA analysis corresponding to absolute variation. Colour coded according to location</p>"
|
|
366 imgString = r"<img src = 'vapPCA.png' alt='PCA Analysis' style='max-width:100%'><br><br>"
|
|
367 htmlString += imgString + r"</div></body></html>"
|
|
368
|
|
369 with open(htmlfn, "w") as htmlfile:
|
|
370 htmlfile.write(htmlString)
|
|
371
|
|
372
|
|
373 def assemble(args,dict):
|
|
374 #argdict = {'name': 2, 'pdfexport': 3, 'kmers': 4, 'inslen': 5, 'covcut': 6, 'forward': 7, 'reverse': 8, 'html_file': 9,'html_resource': 10}
|
|
375 assembleWithVelvet(args[dict['name']],args[dict['kmers']], args[dict['inslen']],args[dict['covcut']], args[dict['forward']],args[dict['reverse']])
|
|
376 contigTranslation(args[dict['name']])
|
|
377 myCountList = HMMerMotifSearch(args[dict['name']])
|
|
378 myFreqList = relativeFrequencyTable(myCountList, args[dict['name']],args[dict['html_resource']]) # saves out inputname_relative_frequncy.csv
|
|
379 # myFreqList = [0.111670020120724, 0.103621730382294, 0.0784708249496982, 0.0110663983903421,
|
|
380 # 0.0543259557344064, 0.0563380281690141, 0.0734406438631791, 0.0160965794768612,
|
|
381 # 0.0110663983903421, 0.028169014084507, 0.126760563380282, 0.0583501006036217, 0.062374245472837,
|
|
382 # 0.0372233400402414, 0.17102615694165]
|
|
383
|
|
384
|
|
385 myDevList = getDeviationFromMean(myFreqList, args[dict['name']], args[dict['html_resource']]) # saves out inputname_deviation_from_mean.csv
|
|
386 relativeFrequencyHeatMap(args[dict['name']], myFreqList,args[dict['pdfexport']], args[dict['html_resource']])
|
|
387 deviationFromMeanHeatMap(args[dict['name']], myDevList,args[dict['pdfexport']], args[dict['html_resource']])
|
|
388 plotPCA(args[dict['name']], myFreqList,args[dict['pdfexport']], args[dict['html_resource']])
|
|
389 createHTML(args[dict['name']], args[dict['html_file']], myFreqList, myDevList) # assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource
|
|
390
|
|
391 def contigs(args,dict):
|
|
392 #argdict = {'name': 2, 'pdfexport': 3, 'contigs': 4, 'html_file': 5, 'html_resource': 6}
|
|
393
|
|
394 shutil.copyfile(args[dict['contigs']], args[dict['name']]+".fa")
|
|
395
|
|
396
|
|
397
|
|
398 contigTranslation(args[dict['name']])
|
|
399 myCountList = HMMerMotifSearch(args[dict['name']])
|
|
400 myFreqList = relativeFrequencyTable(myCountList, args[dict['name']],
|
|
401 args[dict['html_resource']]) # saves out inputname_relative_frequncy.csv
|
|
402 # myFreqList = [0.111670020120724, 0.103621730382294, 0.0784708249496982, 0.0110663983903421,
|
|
403 # 0.0543259557344064, 0.0563380281690141, 0.0734406438631791, 0.0160965794768612,
|
|
404 # 0.0110663983903421, 0.028169014084507, 0.126760563380282, 0.0583501006036217, 0.062374245472837,
|
|
405 # 0.0372233400402414, 0.17102615694165]
|
|
406
|
|
407
|
|
408 myDevList = getDeviationFromMean(myFreqList, args[dict['name']],
|
|
409 args[dict['html_resource']]) # saves out inputname_deviation_from_mean.csv
|
|
410 relativeFrequencyHeatMap(args[dict['name']], myFreqList, args[dict['pdfexport']], args[dict['html_resource']])
|
|
411 deviationFromMeanHeatMap(args[dict['name']], myDevList, args[dict['pdfexport']], args[dict['html_resource']])
|
|
412 plotPCA(args[dict['name']], myFreqList, args[dict['pdfexport']], args[dict['html_resource']])
|
|
413 createHTML(args[dict['name']], args[dict['html_file']], myFreqList,
|
|
414 myDevList) # assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource
|
|
415
|
|
416
|
|
417 def genomicProcess(inputname, exportpdf, forwardFN, reverseFN, htmlfile, htmlresource):
|
|
418 assembleWithVelvet(inputname,forwardFN,reverseFN)
|
|
419 contigTranslation(inputname)
|
|
420 myCountList = HMMerMotifSearch(inputname)
|
|
421 myFreqList = relativeFrequencyTable(myCountList, inputname, htmlresource) # saves out inputname_relative_frequncy.csv
|
|
422 #myFreqList = [0.111670020120724, 0.103621730382294, 0.0784708249496982, 0.0110663983903421,
|
|
423 # 0.0543259557344064, 0.0563380281690141, 0.0734406438631791, 0.0160965794768612,
|
|
424 # 0.0110663983903421, 0.028169014084507, 0.126760563380282, 0.0583501006036217, 0.062374245472837,
|
|
425 # 0.0372233400402414, 0.17102615694165]
|
|
426
|
|
427
|
|
428 myDevList = getDeviationFromMean(myFreqList, inputname,htmlresource) # saves out inputname_deviation_from_mean.csv
|
|
429
|
|
430 relativeFrequencyHeatMap(inputname, myFreqList, exportpdf, htmlresource)
|
|
431 deviationFromMeanHeatMap(inputname, myDevList, exportpdf, htmlresource)
|
|
432 plotPCA(inputname, myFreqList, exportpdf, htmlresource)
|
|
433 createHTML(inputname, htmlfile, myFreqList,myDevList) # assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource
|
|
434 return
|
|
435
|
|
436
|
|
437
|
|
438 if __name__ == "__main__":
|
|
439 #contigTranslation('Tcongo')
|
|
440 #contigTranslation('Test')
|
|
441 #newHMMerMotifSearch('Test')
|
|
442 #HMMerMotifSearch('Tcongo')
|
|
443 #sys.exit()
|
|
444
|
|
445
|
|
446 myFreqList = [0.111670020120724, 0.103621730382294, 0.0784708249496982, 0.0110663983903421,
|
|
447 0.0543259557344064, 0.0563380281690141, 0.0734406438631791, 0.0160965794768612,
|
|
448 0.0110663983903421, 0.028169014084507, 0.126760563380282, 0.0583501006036217, 0.062374245472837,
|
|
449 0.0372233400402414, 0.17102615694165]
|
|
450 myDevList = [0.000790026,0.0073109,-0.001151769,-0.004502933,-0.013687421,-0.016159773,0.021689891,
|
|
451 0.007863809,-0.003133585,-0.001111709,-0.01313879,0.0036997,-0.00935284,0.005640693,0.015243802]
|
|
452
|
|
453 relativeFrequencyHeatMap('test', myFreqList, "PDF_Yes","results")
|
|
454 deviationFromMeanHeatMap('test', myDevList, "PDF_Yes","results")
|
|
455 plotPCA('test',myFreqList,"PDF_Yes","results")
|
|
456
|
|
457 createHTML('test',"results/test.html", myFreqList, myDevList)
|
|
458 #contigTranslation("Test")
|
|
459 #myCountList = HMMerMotifSearch("Test")
|
|
460
|
|
461
|
|
462 sys.exit()
|