# HG changeset patch # User johnheap # Date 1530718351 14400 # Node ID 1e2f57c43854a59243a1419dcfd32162087cdfa0 # Parent cfb25df43776fff8e347f45218d22e0f28f61072 Uploaded diff -r cfb25df43776 -r 1e2f57c43854 Tryp_T.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Tryp_T.py Wed Jul 04 11:32:31 2018 -0400 @@ -0,0 +1,343 @@ +""" + * Copyright 2018 University of Liverpool + * Author: John Heap, Computational Biology Facility, UoL + * Based on original scripts of Sara Silva Pereira, Institute of Infection and Global Health, UoL + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * + """ + + +import subprocess +import pandas as pd +import re +import os +import sys +import matplotlib as mpl +mpl.use('Agg') +import matplotlib.pyplot as plt + +pList = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10', 'P11', 'P12', 'P13', 'P14', 'P15'] +quietString = "" #"">> Vap_log.txt 2>&1" +def transcriptMapping(inputname, strain, forwardFN,reverseFN): + #where is our Reference data - + dir_path = os.path.dirname(os.path.realpath(__file__)) + refName = dir_path+"/data/Reference/Tc148" #default + if strain == "Tc148": + refName = dir_path+"/data/Reference/Tc148" + if strain == "IL3000": + refName = dir_path+"/data/Reference/IL3000" + #argString = "bowtie2 -x Refe4rence/IL3000 -1 data/"+forwardFN+" -2 data/"+reverseFN+" -S "+inputname+".sam" #>log.txt + #argString = "bowtie2 -x Reference/Tc148 -1 data/"+forwardFN+" -2 data/"+reverseFN+" -S "+inputname+".sam" #>log.txt + argString = "bowtie2 -x "+refName+" -1 "+forwardFN+" -2 "+reverseFN+" -S "+inputname+".sam"+quietString #>log.txt + #print(argString) + returncode = subprocess.call(argString, shell=True) + +def processSamFiles(inputname): + #debug use a mapping sam file we have already found + #dir_path = os.path.dirname(os.path.realpath(__file__)) + #bugName = dir_path+"/data/T_Test" #defasult + + cur_path = os.getcwd() + samName = cur_path+"/"+inputname + + #argString = "samtools view -bS "+bugName+" > "+inputname+".bam" + argString = "samtools view -bS "+inputname+".sam > "+samName+".bam"+quietString + #print(argString) + returncode = subprocess.call(argString, shell=True) + + + #argString = "samtools sort "+bugName+" -o "+inputname+".sorted" + argString = "samtools sort "+samName+".bam -o "+samName+".sorted"+quietString + #print("argstring = "+argString) + returncode = subprocess.call(argString, shell=True) + + #argString = "samtools index "+bugName+".sorted "+inputname+".sorted.bai" + argString = "samtools index "+samName+".sorted "+samName+".sorted.bai"+quietString + #print("argstring = " + argString) + returncode = subprocess.call(argString, shell=True) + + + + +def transcriptAbundance(inputname, strain): + dir_path = os.path.dirname(os.path.realpath(__file__)) + refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # defasult + if strain == "Tc148": + refName = dir_path + "/data/Reference/ORFAnnotation.gtf" + if strain == "IL3000": + refName = dir_path + "/data/Reference/IL3000.gtf" + #argString = "cufflinks -G Reference/IL3000.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted" + #argString = "cufflinks -G Reference/ORFAnnotation.gtf -o "+inputname+".cuff -u -p 8 "+inputname+".sorted" + argString = "cufflinks -q -G "+refName+" -o "+inputname+".cuff -u -p 8 "+inputname+".sorted"+quietString + returncode = subprocess.call(argString, shell = True) + + +def convertToFasta(inputName, strain): #equivalent to Sara's awk scripte + dir_path = os.path.dirname(os.path.realpath(__file__)) + refName = dir_path + "/data/Reference/ORFAnnotation.gtf" # default + if strain == "Tc148": + refName = dir_path + "/data/Reference/148_prot.fasta" + if strain == "IL3000": + refName = dir_path + "data/Reference/IL3000_prot.fasta" + + cuff_df = pd.read_csv(inputName+".cuff/genes.fpkm_tracking", sep='\t') + cuff_df = cuff_df[(cuff_df['FPKM'] > 0)] + cuff_df.to_csv("cuffTest.csv") + gene_id_List = cuff_df['gene_id'].tolist() + + #print(gene_id_List) + #print ("Found from 8880="+str(found)) + + # need to load in IL3000_prot.fasta + # for each line with >TcIL3000_1_1940 + # search within cuff_df[gene_id] for match + # add it to the outfile. (need to save it as used by hmmer later + number = 0 + all = 0 + with open(inputName+"_6frame.fas", 'w') as outfile: + ref = open(refName,'r') + #ref = open(r"Reference/IL3000_prot.fasta",'r') + n = 0 + line = ref.readline() + while line: + if line[0] == '>': + all = all+1 + ln = line[1:] #remove > + ln = ln.rstrip() #remove /n /r etc + #print (ln) + if ln in gene_id_List: + number = number+1 + outfile.write(line) + line = ref.readline() + if line: + while line[0] != '>': + outfile.write(line) + line=ref.readline() + else: + line = ref.readline() + else: + line =ref.readline() + ref.close() + print(str(len(gene_id_List))+":"+str(number)+" from "+str(all)) + return cuff_df + +def HMMerMotifSearch(name, strain, cuff_df): + motifs = ['1', '2a', '2b', '3', '4a', '4b', '4c', '5', '6', '7', '8a', '8b', '9a', '9b', + '9c', '10a', '10b', '11a', '11b', '12', '13a', '13b', '13c', '13d', '14', '15a', '15b', '15c'] + dir_path = os.path.dirname(os.path.realpath(__file__)) + phylopath = dir_path + "/data/Motifs/Phylotype" + lineCounts = [] + compoundList = [] + for m in motifs: + argString = "hmmsearch "+phylopath + m + ".hmm " + name + "_6frame.fas > Phy" + m + ".out" + print(argString) + subprocess.call(argString, shell=True) + hmmResult = open("Phy" + m + ".out", 'r') + regex = r"Tc148[0-9]{1,8}" + if strain == "Tc148": + regex = r"Tc148[0-9]{1,8}" + if strain == "IL3000": + regex = r"TcIL3000_[0-9]{1,4}_[0-9]{1,5}" + n = 0 + outList = [] + for line in hmmResult: + m = re.search(regex, line) + if m: + outList.append(""+m.group()) + n += 1 + if re.search(r"inclusion", line): + print("inclusion threshold reached") + break + compoundList.append(outList) + lineCounts.append(n) + hmmResult.close() + #print(lineCounts) + + #print(cuff_df) + concatGroups = [1, 2, 1, 3, 1, 1, 1, 2, 3, 2, 2, 1, 4, 1, 3] + countList = [] + weightList = [] + countIndex = 0 + totalCount = 0 + totalWeigth = 0 + for c in concatGroups: + a = [] + weight = [] + for n in range(0, c): + a = a + compoundList.pop(0) + t = set(a) + countList.append(len(t)) + wa = 0 + for w in t: + wt = cuff_df.loc[cuff_df['gene_id'] == w, 'FPKM'].iloc[0] + #print(w) + #print(wt) + wa = wa+wt + weightList.append(wa) + totalWeigth+=wa + totalCount += len(t) + countList.append(totalCount) + weightList.append(totalWeigth) + #print(countList) + #print("--------") + #print(weightList) + #print("--------") + return countList,weightList + +def relativeFrequencyTable(countList, name, htmlresource): + relFreqList = [] + c = float(countList[15]) + for i in range(0, 15): + relFreqList.append(countList[i] / c) + + data = {'Phylotype': pList, 'Relative Frequency': relFreqList} + relFreq_df = pd.DataFrame(data) + j_fname = htmlresource+ "/" + name + "_t_relative_frequency.csv" + relFreq_df.to_csv(j_fname) + return relFreqList # 0-14 = p1-p15 counts [15] = total counts + + +def weightedFrequencyTable(countList, name, htmlresource): + relFreqList = [] + c = float(countList[15]) + for i in range(0, 15): + relFreqList.append(countList[i] / c) + + data = {'Phylotype': pList, 'Weighted Frequency': relFreqList} + relFreq_df = pd.DataFrame(data) + j_fname = htmlresource+ "/" + name + "_t_weighted_frequency.csv" + relFreq_df.to_csv(j_fname) + return relFreqList # 0-14 = p1-p15 counts [15] = total counts + + + +def createStackedBar(name,freqList,strain,pdf,html_resource): + palette = ["#0000ff", "#6495ed", "#00ffff", "#caff70", + "#228b22", "#528b8b", "#00ff00", "#a52a2a", + "#ff0000", "#ffff00", "#ffa500", "#ff1493", + "#9400d3", "#bebebe", "#000000", "#ff00ff"] + + VAP_148 = [0.072, 0.032, 0.032, 0.004, 0.007, + 0.005, 0.202, 0.004, 0.006, 0.014, + 0.130, 0.133, 0.054, 0.039, 0.265] + + VAP_IL3000 = [0.073, 0.040, 0.049, 0.018, 0.060, + 0.055, 0.054, 0.025, 0.012, 0.060, + 0.142, 0.100, 0.061, 0.078, 0.172] + cmap = plt.cm.get_cmap('tab20') + palette = [cmap(i) for i in range(cmap.N)] + + if strain == "Tc148": + VAPtable = VAP_148 + VAPname='Tc148\nGenome VAP' + if strain == "IL3000": + VAPtable = VAP_IL3000 + VAPname= 'IL3000\nGenome VAP' + width = 0.35 # the width of the bars: can also be len(x) sequence + plots = [] + fpos = 0 + vpos = 0 + for p in range(0, 15): + tp = plt.bar(0, freqList[p], width, color= palette[p], bottom = fpos) + fpos +=freqList[p] + + tp = plt.bar(1, VAPtable[p], width, color= palette[p], bottom = vpos) + vpos +=VAPtable[p] + + plots.append(tp) + plt.xticks([0,1],[name,VAPname]) + plt.legend(plots[::-1],['p15','p14','p13','p12','p11','p10','p9','p8','p7','p6','p5','p4','p3','p2','p1']) + title = "Figure Legend: The transcriptomic Variant Antigen Profile of $\itTrypanosoma$ $\itcongolense$ estimated as phylotype " \ + "proportion adjusted for transcript abundance and the reference genomic Variant Antigen Profile. " \ + "\nData was produced with the 'Variant Antigen Profiler' (Silva Pereira and Jackson, 2018)." + #plt.title(title, wrap="True") + #plt.text(-0.2, -0.05, title, va="top", transform=ax.transAxes, wrap="True") + plt.text(-0.3, -0.15, title, va="top", wrap="True") + plt.tight_layout(pad=1.5) + plt.subplots_adjust(bottom = 0.3,top=0.99,left=0.125,right=0.9,hspace=0.2,wspace=0.2) + + plt.savefig(html_resource + "/stackedbar.png") + if pdf == 'PDF_Yes': + plt.savefig(html_resource + "/stackedbar.pdf") + #plt.show() + + +def createHTML(name,htmlfn,htmlresource,freqList,weightList): + #assumes imgs are heatmap.png, dheatmap.png, vapPCA.png and already in htmlresource + htmlString = r"
Table Legend: Variant Antigen Profiles of a transcriptome of Trypanosoma congolense estimated as phylotype proportion. " \ + "Weighted frequency refers to the phylotype proportion based transcript abundance. " \ + "Data was produced with the 'Variant Antigen Profiler' (Silva Pereira and Jackson, 2018).
" + htmlString += r"" + + htmlString += r"Phylotype | Relative Frequency | Weighted Frequency |
---|---|---|
phy" + str(i + 1) + " | " + f + " | " + w + " |