view DPOGALAXY.py @ 31:3d94608aea7a draft

Uploaded
author jose_duarte
date Mon, 13 Dec 2021 11:19:23 +0000
parents ce0de724097a
children 5a0afb1578ea
line wrap: on
line source


class PDPOPrediction:
    def __init__(self, Folder = 'location', mdl='',seq_file = 'fasta_file.fasta',ttable=11):
        import pickle
        import pandas as pd
        from Bio import SeqIO
        import os
        from pathlib import Path
        self.data = {}
        self.df_output = None
        self.seqfile = seq_file
        self.__location__ = os.path.realpath(os.path.join(os.getcwd(), Folder))

        with open(os.path.join(self.__location__,mdl), 'rb') as m:
            self.model = pickle.load(m)
        if mdl == 'SVM4311':
            with open(os.path.join(__location__,'d4311_SCALER'),'rb') as sl:
                self.scaler = pickle.load(sl)
                self.name = mdl
        elif mdl == 'ANN7185':
            with open(os.path.join(__location__,'d7185_SCALER'),'rb') as sc:
                self.scaler = pickle.load(sc)
                self.name = mdl

        for seq in SeqIO.parse(os.path.join(self.__location__,self.seqfile), 'fasta'):
            DNA_seq = seq.seq
            AA_seq = DNA_seq.translate(table=ttable)
            descr_seq = seq.description.replace(' ','')
            self.data[descr_seq]=[DNA_seq._data,AA_seq._data]
        self.df = pd.DataFrame({'ID':list(self.data.keys()),
                              'DNAseq':[elem[0] for elem in self.data.values()],
                              'AAseq':[elem[1] for elem in self.data.values()]})
        self.df = self.df.set_index('ID')

    def Datastructure(self):
        import pandas as pd
        import pickle
        from Bio.SeqUtils.ProtParam import ProteinAnalysis
        from local_ctd import CalculateCTD
        from local_AAComposition import CalculateAAComposition, CalculateDipeptideComposition

        def count_orf(orf_seq):
            dic = {'DNA-A': 0, 'DNA-C': 0, 'DNA-T': 0, 'DNA-G': 0, 'DNA-GC': 0}
            for letter in range(len(orf_seq)):
                for k in range(0, 4):
                    if orf_seq[letter] in list(dic.keys())[k][-1]:
                        dic[list(dic.keys())[k]] += 1
            dic['DNA-GC'] = ((dic['DNA-C'] + dic['DNA-G']) / (
                    dic['DNA-A'] + dic['DNA-C'] + dic['DNA-T'] + dic['DNA-G'])) * 100
            return dic

        def count_aa(aa_seq):
            dic = {'G': 0, 'A': 0, 'L': 0, 'V': 0, 'I': 0, 'P': 0, 'F': 0, 'S': 0, 'T': 0, 'C': 0,
                   'Y': 0, 'N': 0, 'Q': 0, 'D': 0, 'E': 0, 'R': 0, 'K': 0, 'H': 0, 'W': 0, 'M': 0}
            for letter in range(len(aa_seq)):
                if aa_seq[letter] in dic.keys():
                    dic[aa_seq[letter]] += 1
            return dic

        def sec_st_fr(aa_seq):
            from Bio.SeqUtils.ProtParam import ProteinAnalysis
            st_dic = {'Helix': 0, 'Turn': 0, 'Sheet': 0}
            stu = ProteinAnalysis(aa_seq).secondary_structure_fraction()
            st_dic['Helix'] = stu[0]
            st_dic['Turn'] = stu[1]
            st_dic['Sheet'] = stu[2]
            return st_dic

        self.feat={"SVM4311": ["DNA-A", "DNA-T", "DNA-G", "DNA-GC", "AA_Len", "G", "A", "S", "T", "N", "Turn", "Sheet",
                               "_PolarizabilityC1", "_PolarizabilityC3", "_SolventAccessibilityC1", "_SecondaryStrC1",
                               "_SecondaryStrC2", "_SecondaryStrC3", "_ChargeC2", "_ChargeC3", "_PolarityC1", "_NormalizedVDWVC1",
                               "_NormalizedVDWVC3", "_HydrophobicityC2", "_HydrophobicityC3", "_SecondaryStrT23",
                               "_NormalizedVDWVT13", "_PolarizabilityD1001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001",
                               "_SolventAccessibilityD3001", "_SecondaryStrD1025", "_ChargeD1075","_ChargeD2001", "_ChargeD2025",
                               "_ChargeD3025", "_ChargeD3050", "_PolarityD1075", "_PolarityD3025","_NormalizedVDWVD1001",
                               "_NormalizedVDWVD3050", "_HydrophobicityD2001", "DG", "DT", "GD"],
                   "ANN7185": ["DNA-GC", "AA_Len", "Aromaticity", "IsoelectricPoint", "G", "A", "L", "V", "I", "P", "F",
                               "S", "T", "C", "Y", "N", "Q", "D", "E", "R", "K", "H", "W", "M", "Turn", "Sheet", "_PolarizabilityC1",
                               "_PolarizabilityC2", "_PolarizabilityC3", "_SolventAccessibilityC1", "_SolventAccessibilityC2",
                               "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_ChargeC2", "_ChargeC3", "_PolarityC2",
                               "_NormalizedVDWVC2", "_NormalizedVDWVC3", "_HydrophobicityC1", "_HydrophobicityC2", "_SecondaryStrT13",
                               "_SecondaryStrT23", "_ChargeT12", "_ChargeT13", "_HydrophobicityT12", "_PolarizabilityD1001",
                               "_PolarizabilityD1025", "_PolarizabilityD1050", "_PolarizabilityD2001", "_PolarizabilityD3025",
                               "_PolarizabilityD3050", "_PolarizabilityD3075", "_SolventAccessibilityD1050", "_SolventAccessibilityD2001",
                               "_SolventAccessibilityD2025", "_SolventAccessibilityD2050", "_SolventAccessibilityD3025",
                               "_SolventAccessibilityD3050", "_SolventAccessibilityD3100", "_SecondaryStrD1025", "_SecondaryStrD1050",
                               "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD2050", "_SecondaryStrD2075", "_ChargeD1050",
                               "_ChargeD1075", "_ChargeD1100", "_ChargeD2025", "_ChargeD3025", "_ChargeD3050", "_PolarityD2050",
                               "_PolarityD3050", "_NormalizedVDWVD1001", "_NormalizedVDWVD1050", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
                               "_HydrophobicityD3001", "_HydrophobicityD3075", "AD", "AW", "AY", "RC", "RT", "NA", "NE",
                               "NG", "NP", "DE", "DQ", "DG", "DT", "DY", "CG", "CL", "CY", "CV", "EN", "QA", "QR", "QE",
                               "QI", "GA", "GR", "GD", "GQ", "GG", "GH", "GL", "GF", "GP", "GT", "GY", "HA", "HC", "HI",
                               "HK", "HP", "IC", "IG", "IS", "IT", "IW", "LA", "LR", "LH", "LI", "LK", "LP", "KQ", "KH",
                               "KS", "KT", "MQ", "MG", "MI", "FA", "FR", "FS", "FY", "PC", "PE", "PG", "PH", "PM", "PF",
                               "PT", "SA", "SD", "SC", "SQ", "SW", "TA", "TC", "TM", "WL", "WV", "YE", "YG", "YH", "YI",
                               "YL", "YK", "YM", "YS"]}

        self.df_output = self.df.copy()
        self.df_output.drop(['DNAseq','AAseq'],axis=1,inplace=True)
        dna_feat = {}
        aa_len = {}
        aroma_dic = {}
        iso_dic = {}
        aa_content = {}
        st_dic_master = {}
        CTD_dic = {}
        dp = {}
        for i in range(len(self.df)):
            i_name = self.df.index[i]
            dna_feat[i_name] = count_orf(self.df.iloc[i]['DNAseq'])
            aa_len[i_name] = len(self.df.iloc[i]['AAseq'])
            aroma_dic[i_name] = ProteinAnalysis(self.df.iloc[i]['AAseq']).aromaticity()
            iso_dic[i_name] = ProteinAnalysis(self.df.iloc[i]['AAseq']).isoelectric_point()
            aa_content[i_name] = count_aa(self.df.iloc[i]['AAseq'])
            st_dic_master[i_name] = sec_st_fr(self.df.iloc[i]['AAseq'])
            CTD_dic[i_name] = CalculateCTD(self.df.iloc[i]['AAseq'])
            dp[i_name] = CalculateDipeptideComposition(self.df.iloc[i]['AAseq'])
        for j in self.df.index:
            self.df.loc[j, dna_feat[j].keys()] = dna_feat[j].values() #dic with multiple values
            self.df.loc[j, 'AA_Len'] = int(aa_len[j]) #dic with one value
            self.df.loc[j, 'Aromaticity'] = aroma_dic[j]
            self.df.loc[j, 'IsoelectricPoint'] = iso_dic[j]
            self.df.loc[j, aa_content[j].keys()] = aa_content[j].values()
            self.df.loc[j, st_dic_master[j].keys()] = st_dic_master[j].values()
            self.df.loc[j, CTD_dic[j].keys()] = CTD_dic[j].values()
            self.df.loc[j, dp[j].keys()] = dp[j].values()
        self.df.drop(['DNAseq','AAseq'],axis=1,inplace=True)

    def Prediction(self):
        import os
        import pickle
        import json
        import pandas as pd
        import numpy as np
        from pathlib import Path
        ft_scaler = pd.DataFrame(self.scaler.transform(self.df.iloc[:, :]), index=self.df.index,columns=self.df.columns)
        ft_scaler = ft_scaler.drop(columns=[col for col in self.df if col not in self.feat[self.name]], axis=1)
        scores = self.model.predict_proba(ft_scaler)
        pos_scores = np.empty((self.df.shape[0], 0), float)
        for x in scores:
            pos_scores = np.append(pos_scores, round(x[1]*100))
        self.df_output.reset_index(inplace=True)
        self.df_output['{} DPO Prediction (%)'.format(self.name)]= pos_scores
        #self.df_output = self.df_output.sort_values(by='{} DPO Prediction (%)'.format(self.name), ascending=False)
        self.df_output.to_html('output.html', index=False, justify='center')

if __name__ == '__main__':
    import os
    import sys
    __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))

    model = sys.argv[1]
    fasta_file = sys.argv[2]

    PDPO = PDPOPrediction(__location__,model,fasta_file)
    PDPO.Datastructure()
    PDPO.Prediction()