Mercurial > repos > kellrott > tabular_label_convert
changeset 0:1f93906c2945 draft default tip
Uploaded
author | kellrott |
---|---|
date | Sun, 18 Nov 2012 01:42:40 -0500 |
parents | |
children | |
files | tabular_label_convert/._tabular_label_convert.py tabular_label_convert/tabular_label_convert.py tabular_label_convert/tabular_label_convert.xml |
diffstat | 3 files changed, 274 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tabular_label_convert/tabular_label_convert.py Sun Nov 18 01:42:40 2012 -0500 @@ -0,0 +1,209 @@ +#!/usr/bin/env python + +import os +import csv +import sys +import array +import math +from copy import copy +from argparse import ArgumentParser + + +class FloatMatrix: + def __init__(self): + self.corner_name = "probe" + self.data = None + self.nrows = None + self.ncols = None + self.rowmap = None + self.colmap = None + + def read(self, handle): + header = None + for line in handle: + row = line.rstrip().split("\t") + if header is None: + header = row + self.data = array.array("f") + self.colmap = {} + self.rowmap = {} + self.ncols = len(row) - 1 + self.nrows = 0 + for i, c in enumerate(row[1:]): + self.colmap[c] = i + else: + if len(row) - 1 != self.ncols: + raise DataException("Misformed matrix") + self.rowmap[row[0]] = len(self.rowmap) + a = [] + for v in row[1:]: + try: + a.append(float(v)) + except ValueError: + a.append(float('Nan')) + self.data.extend(a) + self.nrows += 1 + + def init_blank(self, rows, cols): + self.data = array.array("f") + self.colmap = {} + for i,c in enumerate(cols): + self.colmap[c] = i + self.rowmap = {} + for i,r in enumerate(rows): + self.rowmap[r] = i + self.ncols = len(cols) + self.nrows = len(rows) + for i in range(self.nrows): + self.data.extend([float('nan')] * self.ncols) + + def get_value(self, row_name, col_name): + return self.data[ self.rowmap[row_name] * self.ncols + self.colmap[col_name] ] + + def set_value(self, row_name, col_name, value): + self.data[ self.rowmap[row_name] * self.ncols + self.colmap[col_name] ] = value + + def get_row(self, row_name): + return self.data[ self.rowmap[row_name] * self.ncols : (self.rowmap[row_name]+1) * self.ncols ] + + def get_cols(self): + out = self.colmap.keys() + return sorted(out, key=self.colmap.get) + + def has_row(self, row): + return row in self.rowmap + + def has_col(self, col): + return col in self.colmap + + def get_rows(self): + out = self.rowmap.keys() + return sorted(out, key=self.rowmap.get) + + def write(self, handle, missing='NA'): + write = csv.writer(handle, delimiter="\t", lineterminator='\n') + col_list = self.get_cols() + + write.writerow([self.corner_name] + col_list) + for rowName in self.rowmap: + out = [rowName] + row = self.get_row(rowName) + for col in col_list: + val = row[self.colmap[col]] + if val is None or math.isnan(val): + val = missing + else: + val = "%.5f" % (val) + out.append(val) + write.writerow(out) + + +def median(inList): + """calculates median""" + cList = copy(inList) + if len(cList) == 0: + median = float("nan") + elif len(cList) == 1: + return cList[0] + else: + cList.sort() + if len(cList)%2 == 1: + median = cList[len(cList)/2] + else: + median = (cList[len(cList)/2]+cList[(len(cList)/2)-1])/2.0 + return (median) + +def mean(inList): + return sum(inList) / float(len(inList)) + +def aliasRemap(inputMatrix, aliasMap, mode, combine_func): + """ + Given a inputMatrix and an alias map, create a new genomic matrix + with the probes from the original matrix remapped to the connected aliases + from the map + """ + + if mode == "row": + i_am = {} + for label in aliasMap: + if inputMatrix.has_row(label): + for alias in aliasMap[label]: + if alias not in i_am: + i_am[alias] = {} + i_am[alias][label] = True + + out = FloatMatrix() + out.init_blank( rows=i_am.keys(), cols=inputMatrix.get_cols() ) + for a in i_am: + for sample in inputMatrix.get_cols(): + o = [] + for p in i_am[a]: + if inputMatrix.has_row(p): + o.append( inputMatrix.get_value( col_name=sample, row_name=p) ) + if len(o): + out.set_value(col_name=sample, row_name=a, value=combine_func(o)) + return out + + if mode == "col": + i_am = {} + for label in aliasMap: + if inputMatrix.has_col(label): + for alias in aliasMap[label]: + if alias not in i_am: + i_am[alias] = {} + i_am[alias][label] = True + + out = FloatMatrix() + out.init_blank( cols=i_am.keys(), rows=inputMatrix.get_rows() ) + for a in i_am: + for r in inputMatrix.get_rows(): + o = [] + for label in i_am[a]: + if inputMatrix.has_col(label): + o.append( inputMatrix.get_value( row_name=r, col_name=label) ) + if len(o): + out.set_value(col_name=a, row_name=r, value=combine_func(o)) + return out + + +combine_map = { + "mean" : mean, + "median" : median, + "max" : max, + "min" : min +} + +if __name__ == "__main__": + parser = ArgumentParser() + + parser.add_argument("-m", "--mode", dest="mode", help="Row/Column mode", default="row") + parser.add_argument("-c", "--combine", dest="combine", help="Value Combine Method", default="mean") + parser.add_argument("-o", "--output", help="Output file", default=None) + parser.add_argument("inTab", help="Input tabular file", default=None) + parser.add_argument("aliasMap", help="Input alias map", default=None) + + args = parser.parse_args() + + mtx = FloatMatrix() + handle = open(args.inTab) + mtx.read(handle) + handle.close() + + aliasMap = {} + handle = open(args.aliasMap) + for line in handle: + tmp = line.rstrip().split("\t") + if tmp[0] not in aliasMap: + aliasMap[tmp[0]] = {tmp[1] : True} + else: + aliasMap[tmp[0]][tmp[1]] = True + handle.close() + + out = aliasRemap(mtx, aliasMap, args.mode, combine_map[args.combine]) + if args.output is None: + handle = sys.stdout + else: + handle = open(args.output, "w") + out.write(handle) + handle.close() +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tabular_label_convert/tabular_label_convert.xml Sun Nov 18 01:42:40 2012 -0500 @@ -0,0 +1,65 @@ +<tool id="tabular_label_convert" name="Tabular Label Convert" version="1.0.0"> + <description>Tabular Label Convert</description> + <command interpreter="python">tabular_label_convert.py -m ${dim} -c ${merge_mode} $intab $aliasMap -o $outfile</command> + <inputs> + <param name="intab" type="data" format="tabular" label="Tabular Input"/> + <param name="aliasMap" type="data" format="tabular" label="AliasMap"/> + <param name="dim" type="select" label="Merge Across"> + <option value="row">Rows</option> + <option value="col">Columns</option> + </param> + <param name="merge_mode" type="select" label="Merge Mode"> + <option value="mean">Mean</option> + <option value="median">Median</option> + <option value="min">Min</option> + <option value="max">Max</option> + </param> + </inputs> + <outputs> + <data name="outfile" format="tabular"/> + </outputs> + <help> +This tool takes a tabular format file of numerical values and converts the labels of the +rows or columns using an alias map. If two or more labels map to the same alias, then the mean/median/min/max +value is selected to represent the new alias. + +Input tabular format + A tab seperated matrix for floats, with the row and column serving as labels. + + ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ +|probe | sample_1 | sample_2 | sample_3 | sample_4 | ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ +|207189_s_at| -0.210051 | -0.492633 | -0.133921 | -0.462803 | ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ +|207190_at | -0.427553 | -0.021174 |-0.398800 | -0.518978 | ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ +|216013_at | -0.764110 | -0.911805 | -1.450937 | -1.201317 | ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ + +Alias map format + A two column tab seperated files, the first column is the source label with the second column the destination alias. + ++-------------+-----+ +|216013_at |ZXDB | ++-------------+-----+ +|207189_s_at |ZZEF1| ++-------------+-----+ +|207190_at |ZZEF1| ++-------------+-----+ + +Results + With the doing row relabel with 'mean' combination the matrix becomes: + + ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ +|probe | sample_1 | sample_2 | sample_3 | sample_4 | ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ +|ZZEF1 | -0.3188020 | -0.2569035 | -0.2663605 | -0.4908905 | ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ +|ZXDB | -0.764110 | -0.911805 | -1.450937 | -1.201317 | ++-----------+----------------------+-----------------------+-----------------------+-----------------------+ + + + </help> +</tool>