Mercurial > repos > lsong10 > psiclass
comparison PsiCLASS-1.0.2/TranscriptDecider.cpp @ 0:903fc43d6227 draft default tip
Uploaded
author | lsong10 |
---|---|
date | Fri, 26 Mar 2021 16:52:45 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:903fc43d6227 |
---|---|
1 #include "TranscriptDecider.hpp" | |
2 | |
3 void TranscriptDecider::OutputTranscript( int sampleId, struct _subexon *subexons, struct _transcript &transcript ) | |
4 { | |
5 int i, j ; | |
6 // determine the strand | |
7 std::vector<int> subexonInd ; | |
8 transcript.seVector.GetOnesIndices( subexonInd ) ; | |
9 | |
10 // Determine the strand | |
11 char strand[2] = "." ; | |
12 int size = subexonInd.size() ; | |
13 if ( size > 1 ) | |
14 { | |
15 // locate the intron showed up in this transcript. | |
16 for ( i = 0 ; i < size - 1 ; ++i ) | |
17 { | |
18 /*int nextCnt = subexons[ subexonInd[i] ].nextCnt ; | |
19 if ( nextCnt == 0 ) | |
20 continue ; | |
21 | |
22 for ( j = 0 ; j < nextCnt ; ++j ) | |
23 { | |
24 int a = subexons[ subexonInd[i] ].next[j] ; | |
25 if ( subexonInd[i + 1] == a | |
26 && subexons[ subexonInd[i] ].end + 1 < subexons[a].start ) // avoid the case like ..(...[... | |
27 { | |
28 break ; | |
29 } | |
30 } | |
31 if ( j < nextCnt )*/ | |
32 | |
33 if ( subexons[ subexonInd[i] ].end + 1 < subexons[ subexonInd[i + 1] ].start ) | |
34 { | |
35 if ( subexons[ subexonInd[i] ].rightStrand == 1 ) | |
36 strand[0] = '+' ; | |
37 else if ( subexons[ subexonInd[i] ].rightStrand == -1 ) | |
38 strand[0] = '-' ; | |
39 break ; | |
40 } | |
41 } | |
42 } | |
43 | |
44 // TODO: transcript_id | |
45 char *chrom = alignments.GetChromName( subexons[0].chrId ) ; | |
46 char prefix[10] = "" ; | |
47 struct _subexon *catSubexons = new struct _subexon[ size + 1 ] ; | |
48 // Concatenate adjacent subexons | |
49 catSubexons[0] = subexons[ subexonInd[0] ] ; | |
50 j = 1 ; | |
51 for ( i = 1 ; i < size ; ++i ) | |
52 { | |
53 if ( subexons[ subexonInd[i] ].start == catSubexons[j - 1].end + 1 ) | |
54 { | |
55 catSubexons[j - 1].end = subexons[ subexonInd[i] ].end ; | |
56 } | |
57 else | |
58 { | |
59 catSubexons[j] = subexons[ subexonInd[i] ] ; | |
60 ++j ; | |
61 } | |
62 } | |
63 size = j ; | |
64 | |
65 int gid = GetTranscriptGeneId( subexonInd, subexons ) ; | |
66 if ( 0 ) //numThreads <= 1 ) | |
67 { | |
68 fprintf( outputFPs[sampleId], "%s\tCLASSES\ttranscript\t%d\t%d\t1000\t%s\t.\tgene_id \"%s%s.%d\"; transcript_id \"%s%s.%d.%d\"; Abundance \"%.6lf\";\n", | |
69 chrom, catSubexons[0].start + 1, catSubexons[size - 1].end + 1, strand, | |
70 prefix, chrom, gid, | |
71 prefix, chrom, gid, transcriptId[ gid - baseGeneId ], transcript.FPKM ) ; | |
72 for ( i = 0 ; i < size ; ++i ) | |
73 { | |
74 fprintf( outputFPs[ sampleId ], "%s\tCLASSES\texon\t%d\t%d\t1000\t%s\t.\tgene_id \"%s%s.%d\"; " | |
75 "transcript_id \"%s%s.%d.%d\"; exon_number \"%d\"; Abundance \"%.6lf\"\n", | |
76 chrom, catSubexons[i].start + 1, catSubexons[i].end + 1, strand, | |
77 prefix, chrom, gid, | |
78 prefix, chrom, gid, transcriptId[ gid - baseGeneId ], | |
79 i + 1, transcript.FPKM ) ; | |
80 } | |
81 } | |
82 else | |
83 { | |
84 struct _outputTranscript t ; | |
85 int len = 0 ; | |
86 t.chrId = subexons[0].chrId ; | |
87 t.geneId = gid ; | |
88 t.transcriptId = transcriptId[ gid - baseGeneId ] ; | |
89 t.FPKM = transcript.FPKM ; | |
90 t.sampleId = sampleId ; | |
91 t.exons = new struct _pair32[size] ; | |
92 for ( i = 0 ; i < size ; ++i ) | |
93 { | |
94 t.exons[i].a = catSubexons[i].start + 1 ; | |
95 t.exons[i].b = catSubexons[i].end + 1 ; | |
96 len += t.exons[i].b - t.exons[i].a + 1 ; | |
97 } | |
98 t.cov = transcript.abundance * alignments.readLen / len ; | |
99 t.ecnt = size ; | |
100 t.strand = strand[0] ; | |
101 //printf( "%lf\n", transcript.correlationScore ) ; | |
102 | |
103 if ( numThreads > 1 ) | |
104 outputHandler->Add( t ) ; | |
105 else | |
106 outputHandler->Add_SingleThread( t ) ; | |
107 } | |
108 ++transcriptId[ gid - baseGeneId ] ; | |
109 | |
110 delete[] catSubexons ; | |
111 } | |
112 | |
113 int TranscriptDecider::GetFather( int f, int *father ) | |
114 { | |
115 if ( father[f] != f ) | |
116 return father[f] = GetFather( father[f], father ) ; | |
117 return f ; | |
118 } | |
119 | |
120 int TranscriptDecider::GetTranscriptGeneId( std::vector<int> &subexonInd, struct _subexon *subexons ) | |
121 { | |
122 int i ; | |
123 int size = subexonInd.size() ; | |
124 | |
125 for ( i = 0 ; i < size ; ++i ) | |
126 if ( subexons[ subexonInd[i] ].geneId != -2 ) | |
127 return subexons[ subexonInd[i] ].geneId ; | |
128 | |
129 // Some extreme case, where all the regions are mixture regions. | |
130 for ( i = 0 ; i < size - 1 ; ++i ) | |
131 if ( subexons[ subexonInd[i] ].end + 1 < subexons[ subexonInd[i + 1] ].start ) | |
132 { | |
133 return defaultGeneId[ ( subexons[ subexonInd[i] ].rightStrand + 1 ) / 2 ] ; | |
134 } | |
135 return defaultGeneId[0] ; | |
136 } | |
137 | |
138 int TranscriptDecider::GetTranscriptGeneId( struct _transcript &t, struct _subexon *subexons ) | |
139 { | |
140 if ( subexons[ t.first ].geneId != -2 ) | |
141 return subexons[ t.first ].geneId ; | |
142 if ( subexons[ t.last ].geneId != -2 ) | |
143 return subexons[ t.last ].geneId ; | |
144 std::vector<int> subexonInd ; | |
145 t.seVector.GetOnesIndices( subexonInd ) ; | |
146 return GetTranscriptGeneId( subexonInd, subexons ) ; | |
147 } | |
148 | |
149 void TranscriptDecider::InitTranscriptId() | |
150 { | |
151 int i ; | |
152 for ( i = 0 ; i < usedGeneId - baseGeneId ; ++i ) | |
153 transcriptId[i] = 0 ; | |
154 } | |
155 | |
156 bool TranscriptDecider::IsStartOfMixtureStrandRegion( int tag, struct _subexon *subexons, int seCnt ) | |
157 { | |
158 int j, k ; | |
159 int leftStrandCnt[2] = {0, 0}, rightStrandCnt[2] = {0, 0}; | |
160 for ( j = tag + 1 ; j < seCnt ; ++j ) | |
161 if ( subexons[j].start > subexons[j - 1].end + 1 ) | |
162 break ; | |
163 | |
164 for ( k = tag ; k < j ; ++k ) | |
165 { | |
166 if ( subexons[k].leftStrand != 0 ) | |
167 ++leftStrandCnt[ ( subexons[k].leftStrand + 1 ) / 2 ] ; | |
168 if ( subexons[k].rightStrand != 0 ) | |
169 ++rightStrandCnt[ ( subexons[k].rightStrand + 1 ) / 2 ] ; | |
170 } | |
171 | |
172 if ( rightStrandCnt[0] > 0 && leftStrandCnt[0] == 0 && leftStrandCnt[1] > 0 ) | |
173 return true ; | |
174 if ( rightStrandCnt[1] > 0 && leftStrandCnt[1] == 0 && leftStrandCnt[0] > 0 ) | |
175 return true ; | |
176 return false ; | |
177 } | |
178 | |
179 // Return 0 - uncompatible or does not overlap at all. 1 - fully compatible. 2 - Head of the constraints compatible with the tail of the transcript | |
180 // the partial compatible case (return 2) mostly likely happen in DP where we have partial transcript. | |
181 int TranscriptDecider::IsConstraintInTranscript( struct _transcript transcript, struct _constraint &c ) | |
182 { | |
183 //printf( "%d %d, %d %d\n", c.first, c.last, transcript.first, transcript.last ) ; | |
184 if ( c.first < transcript.first || c.first > transcript.last | |
185 || !transcript.seVector.Test( c.first ) | |
186 || ( !transcript.partial && !transcript.seVector.Test( c.last ) ) ) // no overlap or starts too early or some chosen subexons does not compatible | |
187 return 0 ; | |
188 | |
189 // Extract the subexons we should focus on. | |
190 int s, e ; | |
191 s = c.first ; | |
192 e = c.last ; | |
193 bool returnPartial = false ; | |
194 if ( e > transcript.last ) // constraints ends after the transcript. | |
195 { | |
196 if ( transcript.partial ) | |
197 { | |
198 e = transcript.last ; | |
199 returnPartial = true ; | |
200 } | |
201 else | |
202 return 0 ; | |
203 } | |
204 /*printf( "%s: %d %d: (%d %d) (%d %d)\n", __func__, s, e, | |
205 transcript.seVector.Test(0), transcript.seVector.Test(1), | |
206 c.vector.Test(0), c.vector.Test(1) ) ;*/ | |
207 | |
208 compatibleTestVectorT.Assign( transcript.seVector ) ; | |
209 //compatibleTestVectorT.MaskRegionOutsideInRange( s, e, transcript.first, transcript.last ) ; | |
210 compatibleTestVectorT.MaskRegionOutside( s, e ) ; | |
211 | |
212 compatibleTestVectorC.Assign( c.vector ) ; | |
213 if ( c.last > transcript.last ) | |
214 { | |
215 //compatibleTestVectorC.MaskRegionOutsideInRange( s, e, c.first, c.last ) ; | |
216 //compatibleTestVectorC.MaskRegionOutside( s, e ) ; | |
217 compatibleTestVectorC.MaskRegionOutside( 0, e ) ; // Because the bits before s are already all 0s in C. | |
218 } | |
219 /*printf( "after masking %d %d. %d %d %d %d:\n", s, e, transcript.first, transcript.last, c.first, c.last ) ; | |
220 compatibleTestVectorT.Print() ; | |
221 compatibleTestVectorC.Print() ; */ | |
222 // Test compatible. | |
223 int ret = 0 ; | |
224 if ( compatibleTestVectorT.IsEqual( compatibleTestVectorC ) ) | |
225 { | |
226 if ( returnPartial ) | |
227 ret = 2 ; | |
228 else | |
229 ret = 1 ; | |
230 } | |
231 | |
232 return ret ; | |
233 } | |
234 | |
235 int TranscriptDecider::IsConstraintInTranscriptDebug( struct _transcript transcript, struct _constraint &c ) | |
236 { | |
237 //printf( "%d %d, %d %d\n", c.first, c.last, transcript.first, transcript.last ) ; | |
238 if ( c.first < transcript.first || c.first > transcript.last ) // no overlap or starts too early. | |
239 return 0 ; | |
240 printf( "hi\n" ) ; | |
241 // Extract the subexons we should focus on. | |
242 int s, e ; | |
243 s = c.first ; | |
244 e = c.last ; | |
245 bool returnPartial = false ; | |
246 if ( e > transcript.last ) // constraints ends after the transcript. | |
247 { | |
248 if ( transcript.partial ) | |
249 { | |
250 e = transcript.last ; | |
251 returnPartial = true ; | |
252 } | |
253 else | |
254 return 0 ; | |
255 } | |
256 /*printf( "%s: %d %d: (%d %d) (%d %d)\n", __func__, s, e, | |
257 transcript.seVector.Test(0), transcript.seVector.Test(1), | |
258 c.vector.Test(0), c.vector.Test(1) ) ;*/ | |
259 | |
260 compatibleTestVectorT.Assign( transcript.seVector ) ; | |
261 compatibleTestVectorT.MaskRegionOutside( s, e ) ; | |
262 | |
263 compatibleTestVectorC.Assign( c.vector ) ; | |
264 if ( e > transcript.last ) | |
265 compatibleTestVectorC.MaskRegionOutside( s, e ) ; | |
266 /*printf( "after masking: (%d %d) (%d %d)\n", | |
267 compatibleTestVectorT.Test(0), compatibleTestVectorT.Test(1), | |
268 compatibleTestVectorC.Test(0), compatibleTestVectorC.Test(1) ) ;*/ | |
269 | |
270 // Test compatible. | |
271 int ret = 0 ; | |
272 if ( compatibleTestVectorT.IsEqual( compatibleTestVectorC ) ) | |
273 { | |
274 if ( returnPartial ) | |
275 ret = 2 ; | |
276 else | |
277 ret = 1 ; | |
278 } | |
279 compatibleTestVectorT.Print() ; | |
280 compatibleTestVectorC.Print() ; | |
281 printf( "ret=%d\n", ret ) ; | |
282 return ret ; | |
283 } | |
284 int TranscriptDecider::SubTranscriptCount( int tag, struct _subexon *subexons, int *f ) | |
285 { | |
286 if ( f[tag] != -1 ) | |
287 return f[tag] ; | |
288 | |
289 int ret = 0 ; | |
290 int i ; | |
291 if ( subexons[tag].canBeEnd ) | |
292 ret = 1 ; | |
293 for ( i = 0 ; i < subexons[tag].nextCnt ; ++i ) | |
294 { | |
295 ret += SubTranscriptCount( subexons[tag].next[i], subexons, f ) ; | |
296 } | |
297 | |
298 if ( ret == 0 ) | |
299 ret = 1 ; | |
300 return f[tag] = ret ; | |
301 } | |
302 | |
303 void TranscriptDecider::CoalesceSameTranscripts( std::vector<struct _transcript> &t ) | |
304 { | |
305 int i, k ; | |
306 if ( t.size() == 0 ) | |
307 return ; | |
308 | |
309 std::sort( t.begin(), t.end(), CompSortTranscripts ) ; | |
310 | |
311 int size = t.size() ; | |
312 k = 0 ; | |
313 for ( i = 1 ; i < size ; ++i ) | |
314 { | |
315 if ( t[k].seVector.IsEqual( t[i].seVector ) ) | |
316 { | |
317 t[k].abundance += t[i].abundance ; | |
318 t[i].seVector.Release() ; | |
319 } | |
320 else | |
321 { | |
322 ++k ; | |
323 if ( i != k ) | |
324 t[k] = t[i] ; | |
325 } | |
326 } | |
327 t.resize( k + 1 ) ; | |
328 } | |
329 | |
330 void TranscriptDecider::EnumerateTranscript( int tag, int strand, int visit[], int vcnt, struct _subexon *subexons, SubexonCorrelation &correlation, double correlationScore, std::vector<struct _transcript> &alltranscripts, int &atcnt ) | |
331 { | |
332 int i ; | |
333 visit[ vcnt ] = tag ; | |
334 //printf( "%s: %d %d %d %d. %d %d\n", __func__, vcnt, tag, subexons[tag].nextCnt, strand, subexons[tag].start, subexons[tag].end ) ; | |
335 // Compute the correlation score | |
336 double minCor = correlationScore ; | |
337 for ( i = 0 ; i < vcnt ; ++i ) | |
338 { | |
339 double tmp = correlation.Query( visit[i], visit[vcnt] ) ; | |
340 if ( tmp < minCor ) | |
341 minCor = tmp ; | |
342 } | |
343 | |
344 if ( subexons[tag].canBeEnd ) | |
345 { | |
346 struct _transcript &txpt = alltranscripts[atcnt] ; | |
347 for ( i = 0 ; i <= vcnt ; ++i ) | |
348 txpt.seVector.Set( visit[i] ) ; | |
349 | |
350 txpt.first = visit[0] ; | |
351 txpt.last = visit[vcnt] ; | |
352 txpt.partial = false ; | |
353 txpt.correlationScore = minCor ; | |
354 | |
355 //printf( "%lf %d %d ", txpt.correlationScore, vcnt, visit[0] ) ; | |
356 //txpt.seVector.Print() ; | |
357 ++atcnt ; | |
358 } | |
359 | |
360 for ( i = 0 ; i < subexons[tag].nextCnt ; ++i ) | |
361 { | |
362 int a = subexons[tag].next[i] ; | |
363 if ( !SubexonGraph::IsSameStrand( subexons[tag].rightStrand, strand ) | |
364 && subexons[a].start > subexons[tag].end + 1 ) | |
365 continue ; | |
366 int backupStrand = strand ; | |
367 if ( subexons[a].start > subexons[tag].end + 1 && strand == 0 ) | |
368 strand = subexons[tag].rightStrand ; | |
369 EnumerateTranscript( subexons[tag].next[i], strand, visit, vcnt + 1, subexons, correlation, minCor, alltranscripts, atcnt ) ; | |
370 strand = backupStrand ; | |
371 } | |
372 } | |
373 | |
374 void TranscriptDecider::SearchSubTranscript( int tag, int strand, int parents[], int pcnt, struct _dp &pdp, int visit[], int vcnt, int extends[], int extendCnt, | |
375 std::vector<struct _constraint> &tc, int tcStartInd, struct _dpAttribute &attr ) | |
376 { | |
377 int i ; | |
378 int size ; | |
379 double cover ; | |
380 bool keepSearch = true ; | |
381 bool belowMin = false ; | |
382 | |
383 struct _subexon *subexons = attr.subexons ; | |
384 | |
385 visit[vcnt] = tag ; | |
386 ++vcnt ; | |
387 struct _dp visitdp ; | |
388 | |
389 visitdp.cover = -1 ; | |
390 | |
391 struct _transcript &subTxpt = attr.bufferTxpt ; | |
392 subTxpt.seVector.Reset() ; | |
393 for ( i = 0 ; i < pcnt ; ++i ) | |
394 subTxpt.seVector.Set( parents[i] ) ; | |
395 subTxpt.first = parents[0] ; | |
396 subTxpt.last = parents[ pcnt - 1] ; | |
397 for ( i = 0 ; i < vcnt ; ++i ) | |
398 subTxpt.seVector.Set( visit[i] ) ; | |
399 subTxpt.last = visit[ vcnt - 1 ] ; | |
400 subTxpt.partial = true ; | |
401 | |
402 // Adjust the extendsCnt | |
403 /*printf( "%s: %d %d %d\n", __func__, vcnt , extendCnt, extends[ extendCnt - 1] ) ; | |
404 subTxpt.seVector.Print() ; | |
405 tc[extends[extendCnt - 1]].vector.Print() ; | |
406 printf( "Adjust extend:\n") ;*/ | |
407 for ( i = extendCnt - 1 ; i >= 0 ; --i ) | |
408 { | |
409 if ( tc[ extends[i] ].last <= tag || ( tc[ extends[i] ].vector.Test( tag ) && IsConstraintInTranscript( subTxpt, tc[ extends[i] ] ) != 0 ) ) | |
410 break ; | |
411 } | |
412 extendCnt = i + 1 ; | |
413 | |
414 // If the extension ends. | |
415 subTxpt.partial = false ; | |
416 if ( subexons[tag].nextCnt > 0 && ( extendCnt == 0 || tag >= tc[ extends[ extendCnt - 1 ] ].last ) ) | |
417 { | |
418 // Solve the subtranscript beginning with visit. | |
419 // Now we got the optimal transcript for visit. | |
420 visitdp = SolveSubTranscript( visit, vcnt, strand, tc, tcStartInd, attr ) ; | |
421 keepSearch = false ; | |
422 } | |
423 //printf( "%s %d %d: visitdp.cover=%lf\n", __func__, parents[0], tag, visitdp.cover ) ; | |
424 | |
425 // the constraints across the parents and visit. | |
426 size = tc.size() ; | |
427 if ( visitdp.cover >= 0 ) | |
428 { | |
429 cover = visitdp.cover ; | |
430 // Reset the subTxpt, since its content is modofitied in SolveSubTxpt called above. | |
431 subTxpt.seVector.Reset() ; | |
432 for ( i = 0 ; i < pcnt ; ++i ) | |
433 subTxpt.seVector.Set( parents[i] ) ; | |
434 subTxpt.seVector.Or( visitdp.seVector ) ; | |
435 subTxpt.first = parents[0] ; | |
436 subTxpt.last = visitdp.last ; | |
437 subTxpt.partial = false ; | |
438 | |
439 if ( !attr.forAbundance && attr.minAbundance > 0 ) | |
440 { | |
441 for ( i = 0 ; i < pcnt - 1 ; ++i ) | |
442 { | |
443 if ( attr.uncoveredPair.find( parents[i] * attr.seCnt + parents[i + 1] ) != attr.uncoveredPair.end() ) | |
444 belowMin = true ; | |
445 } | |
446 for ( i = -1 ; i < vcnt - 1 ; ++i ) | |
447 { | |
448 if ( i == -1 && pcnt >= 1 ) | |
449 { | |
450 if ( attr.uncoveredPair.find( parents[pcnt - 1] * attr.seCnt + visit[0] ) != attr.uncoveredPair.end() ) | |
451 belowMin = true ; | |
452 } | |
453 else | |
454 { | |
455 if ( attr.uncoveredPair.find( visit[i] * attr.seCnt + visit[i + 1] ) != attr.uncoveredPair.end() ) | |
456 belowMin = true ; | |
457 } | |
458 } | |
459 if ( attr.forAbundance && belowMin ) | |
460 cover = 1e-6 ; | |
461 } | |
462 | |
463 for ( i = tcStartInd ; i < size ; ++i ) | |
464 { | |
465 if ( tc[i].first > parents[ pcnt - 1] ) | |
466 break ; | |
467 | |
468 if ( IsConstraintInTranscript( subTxpt, tc[i] ) == 1 ) | |
469 { | |
470 if ( tc[i].normAbund <= attr.minAbundance ) | |
471 { | |
472 belowMin = true ; | |
473 cover = -2 ; | |
474 break ; | |
475 } | |
476 | |
477 if ( tc[i].abundance <= 0 ) | |
478 continue ; | |
479 | |
480 if ( attr.forAbundance ) | |
481 { | |
482 if ( tc[i].normAbund < cover || cover == 0 ) | |
483 cover = tc[i].normAbund ; | |
484 } | |
485 else | |
486 { | |
487 ++cover ; | |
488 } | |
489 } | |
490 } | |
491 if ( belowMin && pdp.cover == -1 ) | |
492 { | |
493 pdp.cover = -2 ; | |
494 pdp.seVector.Assign( subTxpt.seVector ) ; | |
495 pdp.first = subTxpt.first ; | |
496 pdp.last = subTxpt.last ; | |
497 pdp.strand = strand ; | |
498 } | |
499 else if ( cover > pdp.cover ) | |
500 { | |
501 pdp.cover = cover ; | |
502 pdp.seVector.Assign( subTxpt.seVector ) ; | |
503 pdp.first = subTxpt.first ; | |
504 pdp.last = subTxpt.last ; | |
505 pdp.strand = strand ; | |
506 } | |
507 } | |
508 else if ( visitdp.cover == -2 && pdp.cover == -1 ) // no valid extension from visit | |
509 { | |
510 subTxpt.seVector.Reset() ; | |
511 for ( i = 0 ; i < pcnt ; ++i ) | |
512 subTxpt.seVector.Set( parents[i] ) ; | |
513 subTxpt.seVector.Or( visitdp.seVector ) ; | |
514 subTxpt.first = parents[0] ; | |
515 subTxpt.last = visitdp.last ; | |
516 | |
517 pdp.cover = -2 ; | |
518 pdp.seVector.Assign( subTxpt.seVector ) ; | |
519 pdp.first = subTxpt.first ; | |
520 pdp.last = subTxpt.last ; | |
521 pdp.strand = strand ; | |
522 } | |
523 | |
524 if ( subexons[tag].canBeEnd && ( visitdp.cover < 0 || attr.forAbundance ) ) | |
525 // This works is because that the extension always covers more constraints. So we only go this branch if the extension does not work | |
526 // and it goes this branch if it violates minAbundance | |
527 // But we need to go here when we want to compute the maxAbundance transcript. | |
528 // This part also works as the exit point of the recurive function. | |
529 { | |
530 bool belowMin = false ; | |
531 subTxpt.seVector.Reset() ; | |
532 for ( i = 0 ; i < pcnt ; ++i ) | |
533 subTxpt.seVector.Set( parents[i] ) ; | |
534 for ( i = 0 ; i < vcnt ; ++i ) | |
535 subTxpt.seVector.Set( visit[i] ) ; | |
536 subTxpt.first = parents[0] ; | |
537 subTxpt.last = visit[ vcnt - 1] ; | |
538 subTxpt.partial = false ; | |
539 | |
540 cover = 0 ; | |
541 if ( attr.forAbundance || attr.minAbundance > 0 ) | |
542 { | |
543 for ( i = 0 ; i < pcnt - 1 ; ++i ) | |
544 { | |
545 if ( attr.uncoveredPair.find( parents[i] * attr.seCnt + parents[i + 1] ) != attr.uncoveredPair.end() ) | |
546 belowMin = true ; | |
547 } | |
548 for ( i = -1 ; i < vcnt - 1 ; ++i ) | |
549 { | |
550 if ( i == -1 && pcnt >= 1 ) | |
551 { | |
552 if ( attr.uncoveredPair.find( parents[pcnt - 1] * attr.seCnt + visit[0] ) != attr.uncoveredPair.end() ) | |
553 belowMin = true ; | |
554 } | |
555 else | |
556 { | |
557 if ( attr.uncoveredPair.find( visit[i] * attr.seCnt + visit[i + 1] ) != attr.uncoveredPair.end() ) | |
558 belowMin = true ; | |
559 } | |
560 } | |
561 | |
562 //if ( belowMin == true ) | |
563 // printf( "turned belowMin. %d. %d %d: %d %d %d\n", attr.uncoveredPair.size(), pcnt, vcnt, parents[0], visit[0], visit[ vcnt - 1] ) ; | |
564 | |
565 if ( attr.forAbundance && belowMin ) | |
566 cover = 1e-6 ; | |
567 } | |
568 | |
569 for ( i = tcStartInd ; i < size ; ++i ) | |
570 { | |
571 // note that the value is parents[ pcnt - 1], because | |
572 // in above the part of "visit" is computed in SolveSubTranscript( visit ). | |
573 if ( tc[i].first > visit[ vcnt - 1] ) | |
574 break ; | |
575 if ( IsConstraintInTranscript( subTxpt, tc[i] ) == 1 ) | |
576 { | |
577 if ( tc[i].normAbund <= attr.minAbundance ) | |
578 { | |
579 belowMin = true ; | |
580 cover = -2 ; | |
581 break ; | |
582 } | |
583 | |
584 if ( tc[i].abundance <= 0 ) | |
585 continue ; | |
586 if ( attr.forAbundance ) | |
587 { | |
588 if ( tc[i].normAbund < cover || cover == 0 ) | |
589 cover = tc[i].normAbund ; | |
590 } | |
591 else | |
592 { | |
593 ++cover ; | |
594 } | |
595 } | |
596 } | |
597 | |
598 if ( belowMin && pdp.cover == -1 ) | |
599 { | |
600 pdp.cover = -2 ; | |
601 pdp.seVector.Assign( subTxpt.seVector ) ; | |
602 pdp.first = subTxpt.first ; | |
603 pdp.last = subTxpt.last ; | |
604 pdp.strand = strand ; | |
605 } | |
606 else if ( cover > pdp.cover ) | |
607 { | |
608 pdp.cover = cover ; | |
609 pdp.seVector.Assign( subTxpt.seVector ) ; | |
610 pdp.first = subTxpt.first ; | |
611 pdp.last = subTxpt.last ; | |
612 pdp.strand = strand ; | |
613 } | |
614 } | |
615 //printf( "%s %d: pdp.cover=%lf\n", __func__, tag, pdp.cover ) ; | |
616 | |
617 // keep searching. | |
618 if ( keepSearch ) | |
619 { | |
620 for ( i = 0 ; i < subexons[tag].nextCnt ; ++i ) | |
621 { | |
622 int b = subexons[tag].next[i] ; | |
623 if ( ( SubexonGraph::IsSameStrand( subexons[tag].rightStrand, strand ) | |
624 && SubexonGraph::IsSameStrand( subexons[b].leftStrand, strand ) ) || | |
625 subexons[b].start == subexons[tag].end + 1 ) | |
626 { | |
627 int backupStrand = strand ; | |
628 if ( subexons[b].start > subexons[tag].end + 1 ) | |
629 strand = subexons[tag].rightStrand ; | |
630 | |
631 SearchSubTranscript( subexons[tag].next[i], strand, parents, pcnt, pdp, visit, vcnt, | |
632 extends, extendCnt, tc, tcStartInd, attr ) ; | |
633 strand = backupStrand ; | |
634 } | |
635 } | |
636 | |
637 } | |
638 | |
639 return ; | |
640 } | |
641 | |
642 struct _dp TranscriptDecider::SolveSubTranscript( int visit[], int vcnt, int strand, std::vector<struct _constraint> &tc, int tcStartInd, struct _dpAttribute &attr ) | |
643 { | |
644 int i ; | |
645 int size ; | |
646 /*printf( "%s: ", __func__ ) ; | |
647 for ( i = 0 ; i < vcnt ; ++i ) | |
648 printf( "%d ", visit[i] ) ; | |
649 printf( ": %lf %d %d", attr.f1[ visit[0] ].cover, attr.f1[ visit[0] ].timeStamp, attr.timeStamp ) ; | |
650 printf( "\n" ) ;*/ | |
651 // Test whether it is stored in dp | |
652 if ( vcnt == 1 ) | |
653 { | |
654 if ( attr.f1[ visit[0] ].cover != -1 && attr.f1[ visit[0] ].strand == strand && ( attr.f1[ visit[0] ].timeStamp == attr.timeStamp || | |
655 ( attr.f1[ visit[0] ].minAbundance < attr.minAbundance && attr.f1[visit[0]].cover == -2 ) ) ) //even given lower minAbundance threshold, it fails | |
656 { | |
657 return attr.f1[ visit[0] ] ; | |
658 } | |
659 } | |
660 else if ( vcnt == 2 && attr.f2 ) | |
661 { | |
662 int a = visit[0] ; | |
663 int b = visit[1] ; | |
664 | |
665 if ( attr.f2[a][b].cover != -1 && attr.f2[a][b].strand == strand && ( attr.f2[a][b].timeStamp == attr.timeStamp || | |
666 ( attr.f2[a][b].minAbundance < attr.minAbundance && attr.f2[a][b].cover == -2 ) ) ) | |
667 { | |
668 return attr.f2[a][b] ; | |
669 } | |
670 } | |
671 else | |
672 { | |
673 int key = 0 ; | |
674 for ( i = 0 ; i < vcnt ; ++i ) | |
675 key = ( key * attr.seCnt + visit[i] ) % hashMax ; | |
676 if ( key < 0 ) | |
677 key += hashMax ; | |
678 | |
679 if ( attr.hash[key].cover != -1 && attr.hash[key].cnt == vcnt && attr.hash[key].strand == strand && | |
680 ( attr.hash[key].first == visit[0] ) && | |
681 ( attr.hash[key].timeStamp == attr.timeStamp || | |
682 ( attr.hash[key].minAbundance < attr.minAbundance && attr.hash[key].cover == -2 ) ) ) | |
683 { | |
684 struct _transcript subTxpt = attr.bufferTxpt ; | |
685 subTxpt.seVector.Reset() ; | |
686 for ( i = 0 ; i < vcnt ; ++i ) | |
687 subTxpt.seVector.Set( visit[i] ) ; | |
688 //subTxpt.seVector.Print() ; | |
689 //attr.hash[key].seVector.Print() ; | |
690 subTxpt.seVector.Xor( attr.hash[key].seVector ) ; | |
691 subTxpt.seVector.MaskRegionOutside( visit[0], visit[ vcnt - 1] ) ; | |
692 //printf( "hash test: %d %d\n", key, subTxpt.seVector.IsAllZero() ) ; | |
693 if ( subTxpt.seVector.IsAllZero() ) | |
694 { | |
695 return attr.hash[key] ; | |
696 } | |
697 | |
698 // Can't use the code below, because vcnt is the header of subexons. | |
699 /*for ( i = 0 ; i < vcnt ; ++i ) | |
700 if ( !attr.hash[key].seVector.Test( visit[i] ) ) | |
701 break ; | |
702 if ( i >= vcnt ) | |
703 return attr.hash[key] ;*/ | |
704 | |
705 } | |
706 } | |
707 // adjust tcStartInd | |
708 size = tc.size() ; | |
709 for ( i = tcStartInd ; i < size ; ++i ) | |
710 if ( tc[i].first >= visit[0] ) | |
711 break ; | |
712 tcStartInd = i ; | |
713 | |
714 | |
715 struct _subexon *subexons = attr.subexons ; | |
716 struct _dp visitdp ; | |
717 visitdp.seVector.Init( attr.seCnt ) ; | |
718 visitdp.cover = -1 ; | |
719 | |
720 struct _transcript &subTxpt = attr.bufferTxpt ; | |
721 // This happens when it is called from PickTranscriptsByDP, the first subexon might be the end. | |
722 subTxpt.seVector.Reset() ; | |
723 for ( i = 0 ; i < vcnt ; ++i ) | |
724 subTxpt.seVector.Set( visit[i] ) ; | |
725 subTxpt.first = visit[0] ; | |
726 subTxpt.last = visit[vcnt - 1] ; | |
727 | |
728 if ( subexons[ visit[vcnt - 1] ].canBeEnd ) | |
729 { | |
730 subTxpt.partial = false ; | |
731 double cover = 0 ; | |
732 for ( i = tcStartInd ; i < size ; ++i ) | |
733 { | |
734 if ( tc[i].first > subTxpt.last ) | |
735 break ; | |
736 | |
737 if ( IsConstraintInTranscript( subTxpt, tc[i] ) == 1 ) | |
738 { | |
739 if ( tc[i].normAbund <= attr.minAbundance ) | |
740 { | |
741 cover = -2 ; | |
742 break ; | |
743 } | |
744 | |
745 if ( tc[i].abundance <= 0 ) | |
746 continue ; | |
747 if ( attr.forAbundance ) | |
748 { | |
749 if ( tc[i].normAbund < cover || cover == 0 ) | |
750 cover = tc[i].normAbund ; | |
751 } | |
752 else | |
753 ++cover ; | |
754 } | |
755 } | |
756 | |
757 visitdp.seVector.Assign( subTxpt.seVector ) ; | |
758 visitdp.cover = cover ; | |
759 visitdp.first = subTxpt.first ; | |
760 visitdp.last = subTxpt.last ; | |
761 visitdp.strand = strand ; | |
762 } | |
763 | |
764 // Now we extend. | |
765 size = tc.size() ; | |
766 int *extends = new int[tc.size() - tcStartInd + 1] ; | |
767 int extendCnt = 0 ; | |
768 subTxpt.partial = true ; | |
769 for ( i = tcStartInd ; i < size ; ++i ) | |
770 { | |
771 if ( tc[i].first > subTxpt.last ) | |
772 break ; | |
773 if ( IsConstraintInTranscript( subTxpt, tc[i] ) == 2 ) | |
774 { | |
775 extends[extendCnt] = i ; | |
776 ++extendCnt ; | |
777 } | |
778 } | |
779 | |
780 // Sort the extend by the index of the last subexon. | |
781 if ( extendCnt > 0 ) | |
782 { | |
783 struct _pair32 *extendsPairs = new struct _pair32[extendCnt] ; | |
784 | |
785 for ( i = 0 ; i < extendCnt ; ++i ) | |
786 { | |
787 extendsPairs[i].a = extends[i] ; | |
788 extendsPairs[i].b = tc[ extends[i] ].last ; | |
789 } | |
790 qsort( extendsPairs, extendCnt, sizeof( struct _pair32 ), CompPairsByB ) ; | |
791 | |
792 for ( i = 0 ; i < extendCnt ; ++i ) | |
793 extends[i] = extendsPairs[i].a ; | |
794 | |
795 delete[] extendsPairs ; | |
796 } | |
797 | |
798 size = subexons[ visit[vcnt - 1] ].nextCnt ; | |
799 int nextvCnt = 1 ; | |
800 if ( extendCnt > 0 && tc[ extends[ extendCnt - 1 ] ].last - visit[ vcnt - 1 ] > 1 ) | |
801 nextvCnt = tc[ extends[ extendCnt - 1 ] ].last - visit[ vcnt - 1 ] ; | |
802 int *nextv = new int[ nextvCnt ] ; | |
803 for ( i = 0 ; i < size ; ++i ) | |
804 { | |
805 int a = visit[vcnt - 1] ; | |
806 int b = subexons[a].next[i] ; | |
807 if ( ( SubexonGraph::IsSameStrand( subexons[a].rightStrand, strand ) | |
808 && SubexonGraph::IsSameStrand( subexons[b].leftStrand, strand ) ) | |
809 || | |
810 subexons[b].start == subexons[a].end + 1 ) | |
811 { | |
812 int backupStrand = strand ; | |
813 if ( subexons[b].start > subexons[a].end + 1 ) | |
814 strand = subexons[a].rightStrand ; | |
815 SearchSubTranscript( subexons[ visit[vcnt - 1] ].next[i], strand, visit, vcnt, visitdp, nextv, 0, extends, extendCnt, tc, tcStartInd, attr ) ; | |
816 strand = backupStrand ; | |
817 | |
818 } | |
819 } | |
820 //printf( "%s %d(%d) %d %d %d: %lf\n", __func__, visit[0], subexons[ visit[vcnt - 1] ].canBeEnd, size, extendCnt, strand, visitdp.cover ) ; | |
821 delete[] nextv ; | |
822 delete[] extends ; | |
823 | |
824 // store the result in the dp structure. | |
825 // We return the structure stored in dp to simplify the memory access pattern. | |
826 // In other words, we assume the structure returned from this function always uses the memory from attr.dp | |
827 if ( vcnt == 1 ) | |
828 { | |
829 SetDpContent( attr.f1[ visit[0] ], visitdp, attr ) ; | |
830 visitdp.seVector.Release() ; | |
831 return attr.f1[ visit[0] ] ; | |
832 } | |
833 else if ( vcnt == 2 && attr.f2 ) | |
834 { | |
835 SetDpContent( attr.f2[ visit[0] ][ visit[1] ], visitdp, attr ) ; | |
836 visitdp.seVector.Release() ; | |
837 return attr.f2[ visit[0] ][ visit[1] ] ; | |
838 } | |
839 else | |
840 { | |
841 int key = 0 ; | |
842 for ( i = 0 ; i < vcnt ; ++i ) | |
843 key = ( key * attr.seCnt + visit[i] ) % hashMax ; | |
844 if ( key < 0 ) | |
845 key += hashMax ; | |
846 | |
847 //static int hashUsed = 0 ; | |
848 //if ( attr.hash[key].cover == -1 ) | |
849 // ++hashUsed ; | |
850 //printf( "%d/%d\n", hashUsed, HASH_MAX) ; | |
851 //printf( "hash write: %d\n", key ) ; | |
852 SetDpContent( attr.hash[key], visitdp, attr ) ; | |
853 attr.hash[key].cnt = vcnt ; | |
854 visitdp.seVector.Release() ; | |
855 return attr.hash[key] ; | |
856 } | |
857 } | |
858 | |
859 | |
860 void TranscriptDecider::PickTranscriptsByDP( struct _subexon *subexons, int seCnt, int iterBound, Constraints &constraints, SubexonCorrelation &correlation, struct _dpAttribute &attr, std::vector<struct _transcript> &alltranscripts ) | |
861 { | |
862 int i, j, k ; | |
863 | |
864 std::vector<struct _transcript> transcripts ; | |
865 std::vector<struct _constraint> &tc = constraints.constraints ; | |
866 int tcCnt = tc.size() ; | |
867 int coalesceThreshold = 1024 ; | |
868 | |
869 //printf( "tcCnt=%d\n", tcCnt ) ; | |
870 | |
871 attr.timeStamp = 1 ; | |
872 attr.bufferTxpt.seVector.Init( seCnt ) ; | |
873 attr.subexons = subexons ; | |
874 attr.seCnt = seCnt ; | |
875 | |
876 double maxAbundance = -1 ; | |
877 // Initialize the dp data structure | |
878 /*memset( attr.f1, -1, sizeof( struct _dp ) * seCnt ) ; | |
879 for ( i = 0 ; i < seCnt ; ++i ) | |
880 memset( attr.f2[i], -1, sizeof( struct _dp ) * seCnt ) ; | |
881 memset( attr.hash, -1, sizeof( struct _dp ) * HASH_MAX ) ;*/ | |
882 for ( i = 0 ; i < seCnt ; ++i ) | |
883 ResetDpContent( attr.f1[i] ) ; | |
884 for ( i = 0 ; i < seCnt && attr.f2 ; ++i ) | |
885 for ( j = i ; j < seCnt ; ++j ) | |
886 ResetDpContent( attr.f2[i][j] ) ; | |
887 for ( i = 0 ; i < hashMax ; ++i ) | |
888 ResetDpContent( attr.hash[i] ) ; | |
889 | |
890 // Set the uncovered pair | |
891 attr.uncoveredPair.clear() ; | |
892 BitTable bufferTable( seCnt ) ; | |
893 k = 0 ; | |
894 for ( i = 0 ; i < seCnt ; ++i ) | |
895 { | |
896 for ( ; k < tcCnt ; ++k ) | |
897 { | |
898 if ( tc[k].last >= i ) | |
899 break ; | |
900 } | |
901 | |
902 if ( k >= tcCnt || tc[k].first > i ) | |
903 { | |
904 for ( j = 0 ; j < subexons[i].nextCnt ; ++j ) | |
905 { | |
906 attr.uncoveredPair[i * seCnt + subexons[i].next[j] ] = 1 ; | |
907 } | |
908 continue ; | |
909 } | |
910 | |
911 for ( j = 0 ; j < subexons[i].nextCnt ; ++j ) | |
912 { | |
913 bool covered = false ; | |
914 int l, n ; | |
915 | |
916 n = subexons[i].next[j] ; | |
917 for ( l = k ; l < tcCnt ; ++l ) | |
918 { | |
919 if ( tc[l].first > i ) | |
920 break ; | |
921 if ( tc[l].vector.Test( i ) && tc[l].vector.Test( n ) ) | |
922 { | |
923 if ( n == i + 1 ) | |
924 { | |
925 covered = true ; | |
926 break ; | |
927 } | |
928 else | |
929 { | |
930 bufferTable.Assign( tc[l].vector ) ; | |
931 bufferTable.MaskRegionOutside( i + 1, n - 1 ) ; | |
932 if ( bufferTable.IsAllZero() ) | |
933 { | |
934 covered = true ; | |
935 break ; | |
936 } | |
937 } | |
938 } | |
939 } | |
940 | |
941 if ( !covered ) | |
942 { | |
943 //printf( "set!: (%d: %d %d) (%d: %d %d)\n", i, subexons[i].start, subexons[i].end, n, subexons[n].start, subexons[n].end ) ; | |
944 attr.uncoveredPair[ i * seCnt + n ] = 1 ; | |
945 } | |
946 } | |
947 } | |
948 bufferTable.Release() ; | |
949 | |
950 | |
951 // Find the max abundance | |
952 attr.forAbundance = true ; | |
953 attr.minAbundance = 0 ; | |
954 for ( i = 0 ; i < seCnt ; ++i ) | |
955 { | |
956 if ( subexons[i].canBeStart ) | |
957 { | |
958 int visit[1] = {i} ; | |
959 struct _dp tmp ; | |
960 | |
961 tmp = SolveSubTranscript( visit, 1, 0, tc, 0, attr ) ; | |
962 | |
963 if ( tmp.cover > maxAbundance ) | |
964 maxAbundance = tmp.cover ; | |
965 } | |
966 } | |
967 //PrintLog( "maxAbundance=%lf", maxAbundance ) ; | |
968 //exit( 1 ) ; | |
969 | |
970 // Pick the transcripts. Quantative Set-Cover | |
971 // Notice that by the logic in SearchSubTxpt and SolveSubTxpt, we don't need to reinitialize the data structure. | |
972 attr.forAbundance = false ; | |
973 int *coveredTc = new int[tcCnt] ; | |
974 int coveredTcCnt ; | |
975 struct _dp maxCoverDp ; | |
976 struct _dp bestDp ; | |
977 std::map<double, struct _dp> cachedCoverResult ; | |
978 | |
979 maxCoverDp.seVector.Init( seCnt ) ; | |
980 bestDp.seVector.Init( seCnt ) ; | |
981 int iterCnt = 0 ; | |
982 | |
983 while ( 1 ) | |
984 { | |
985 double bestScore ; | |
986 | |
987 // iterately assign constraints | |
988 attr.minAbundance = 0 ; | |
989 | |
990 // Find the best candidate transcript. | |
991 bestDp.cover = -1 ; | |
992 bestScore = -1 ; | |
993 while ( 1 ) | |
994 { | |
995 // iterate the change of minAbundance | |
996 if ( cachedCoverResult.find( attr.minAbundance ) != cachedCoverResult.end() ) | |
997 { | |
998 struct _dp tmp = cachedCoverResult[ attr.minAbundance ] ; | |
999 SetDpContent( maxCoverDp, tmp, attr ) ; | |
1000 } | |
1001 else | |
1002 { | |
1003 maxCoverDp.cover = -1 ; | |
1004 ++attr.timeStamp ; | |
1005 for ( i = 0 ; i < seCnt ; ++i ) | |
1006 { | |
1007 if ( subexons[i].canBeStart == false ) | |
1008 continue ; | |
1009 int visit[1] = {i} ; | |
1010 struct _dp tmp ; | |
1011 tmp = SolveSubTranscript( visit, 1, 0, tc, 0, attr ) ; | |
1012 | |
1013 if ( tmp.cover > maxCoverDp.cover && tmp.cover > 0 ) | |
1014 { | |
1015 SetDpContent( maxCoverDp, tmp, attr ) ; | |
1016 } | |
1017 //if ( subexons[i].start == 6870264 || subexons[i].start == 6872237 ) | |
1018 // printf( "%d: %lf\n", i, tmp.cover ) ; | |
1019 } | |
1020 | |
1021 if ( maxCoverDp.cover == -1 ) | |
1022 break ; | |
1023 struct _dp ccr ; | |
1024 ccr.seVector.Init( seCnt ) ; | |
1025 SetDpContent( ccr, maxCoverDp, attr ) ; | |
1026 cachedCoverResult[ attr.minAbundance ] = ccr ; | |
1027 } | |
1028 // the abundance for the max cover txpt. | |
1029 double min = -1 ; | |
1030 struct _transcript &subTxpt = attr.bufferTxpt ; | |
1031 subTxpt.seVector.Assign( maxCoverDp.seVector ) ; | |
1032 subTxpt.first = maxCoverDp.first ; | |
1033 subTxpt.last = maxCoverDp.last ; | |
1034 | |
1035 for ( i = 0 ; i < tcCnt ; ++i ) | |
1036 { | |
1037 if ( IsConstraintInTranscript( subTxpt, tc[i] ) == 1 ) | |
1038 { | |
1039 if ( tc[i].normAbund < min || min == -1 ) | |
1040 min = tc[i].normAbund ; | |
1041 } | |
1042 } | |
1043 | |
1044 if ( attr.minAbundance == 0 ) | |
1045 { | |
1046 std::vector<int> subexonIdx ; | |
1047 maxCoverDp.seVector.GetOnesIndices( subexonIdx ) ; | |
1048 int size = subexonIdx.size() ; | |
1049 for ( i = 0 ; i < size - 1 ; ++i ) | |
1050 if ( attr.uncoveredPair.find( subexonIdx[i] * seCnt + subexonIdx[i + 1] ) != attr.uncoveredPair.end() ) | |
1051 { | |
1052 min = 1e-6 ; | |
1053 break ; | |
1054 } | |
1055 } | |
1056 | |
1057 double score = ComputeScore( maxCoverDp.cover, 1.0, min, maxAbundance, 0 ) ; | |
1058 if ( bestScore == -1 || score > bestScore ) | |
1059 { | |
1060 bestScore = score ; | |
1061 SetDpContent( bestDp, maxCoverDp, attr ) ; | |
1062 } | |
1063 else if ( score < bestScore ) | |
1064 { | |
1065 if ( ComputeScore( maxCoverDp.cover, 1.0, maxAbundance, maxAbundance, 0 ) < bestScore ) | |
1066 break ; | |
1067 } | |
1068 //PrintLog( "normAbund=%lf maxCoverDp.cover=%lf score=%lf timeStamp=%d", min, maxCoverDp.cover, score, attr.timeStamp ) ; | |
1069 attr.minAbundance = min ; | |
1070 } // end of iteration for minAbundance. | |
1071 | |
1072 if ( bestDp.cover == -1 ) | |
1073 break ; | |
1074 // Assign the constraints. | |
1075 coveredTcCnt = 0 ; | |
1076 double update = -1 ; | |
1077 struct _transcript &subTxpt = attr.bufferTxpt ; | |
1078 subTxpt.seVector.Assign( bestDp.seVector ) ; | |
1079 subTxpt.first = bestDp.first ; | |
1080 subTxpt.last = bestDp.last ; | |
1081 subTxpt.partial = false ; | |
1082 for ( i = 0 ; i < tcCnt ; ++i ) | |
1083 { | |
1084 if ( IsConstraintInTranscript( subTxpt, tc[i] ) == 1 ) | |
1085 { | |
1086 if ( tc[i].abundance > 0 && | |
1087 ( tc[i].abundance < update || update == -1 ) ) | |
1088 { | |
1089 update = tc[i].abundance ; | |
1090 } | |
1091 coveredTc[ coveredTcCnt ] = i ; | |
1092 ++coveredTcCnt ; | |
1093 } | |
1094 /*else | |
1095 { | |
1096 printf( "%d: ", i ) ; | |
1097 tc[i].vector.Print() ; | |
1098 if ( i == 127 ) | |
1099 { | |
1100 printf( "begin debug:\n" ) ; | |
1101 IsConstraintInTranscriptDebug( subTxpt, tc[i] ) ; | |
1102 } | |
1103 }*/ | |
1104 } | |
1105 update *= ( 1 + iterCnt / 50 ) ;//* ( 1 + iterCnt / 50 ) ; | |
1106 | |
1107 //PrintLog( "%d: update=%lf %d %d. %d %d %d", iterCnt, update, coveredTcCnt, tcCnt, | |
1108 // bestDp.first, bestDp.last, subexons[ bestDp.first ].start ) ; | |
1109 //bestDp.seVector.Print() ; | |
1110 | |
1111 struct _transcript nt ; | |
1112 nt.seVector.Duplicate( bestDp.seVector ) ; | |
1113 nt.first = bestDp.first ; | |
1114 nt.last = bestDp.last ; | |
1115 nt.partial = false ; | |
1116 nt.abundance = 0 ; | |
1117 for ( i = 0 ; i < coveredTcCnt ; ++i ) | |
1118 { | |
1119 j = coveredTc[i] ; | |
1120 if ( tc[j].abundance > 0 ) | |
1121 { | |
1122 double tmp = ( tc[j].abundance > update ? update : tc[j].abundance ) ; | |
1123 tc[j].abundance -= tmp ; | |
1124 double factor = 1 ; | |
1125 | |
1126 nt.abundance += ( tc[j].support * update / tc[j].normAbund * factor ) ; | |
1127 | |
1128 if ( tc[j].abundance <= 0 ) | |
1129 { | |
1130 std::vector<double> removeKey ; | |
1131 for ( std::map<double, struct _dp>::iterator it = cachedCoverResult.begin() ; it != cachedCoverResult.end() ; ++it ) | |
1132 { | |
1133 subTxpt.seVector.Assign( it->second.seVector ) ; | |
1134 subTxpt.first = it->second.first ; | |
1135 subTxpt.last = it->second.last ; | |
1136 subTxpt.partial = false ; | |
1137 if ( IsConstraintInTranscript( subTxpt, tc[j] ) == 1 ) | |
1138 { | |
1139 it->second.seVector.Release() ; | |
1140 removeKey.push_back( it->first ) ; | |
1141 } | |
1142 } | |
1143 int size = removeKey.size() ; | |
1144 int l ; | |
1145 for ( l = 0 ; l < size ; ++l ) | |
1146 cachedCoverResult.erase( removeKey[l] ) ; | |
1147 } | |
1148 } | |
1149 | |
1150 if ( tc[j].abundance < 0 ) | |
1151 tc[j].abundance = 0 ; | |
1152 } | |
1153 | |
1154 transcripts.push_back( nt ) ; | |
1155 if ( transcripts.size() >= transcripts.capacity() && (int)transcripts.size() >= coalesceThreshold ) | |
1156 { | |
1157 CoalesceSameTranscripts( transcripts ) ; | |
1158 if ( transcripts.size() >= transcripts.capacity() / 2 ) | |
1159 coalesceThreshold *= 2 ; | |
1160 } | |
1161 ++iterCnt ; | |
1162 | |
1163 if ( iterCnt >= iterBound ) | |
1164 break ; | |
1165 } | |
1166 CoalesceSameTranscripts( transcripts ) ; | |
1167 int size = transcripts.size() ; | |
1168 // Compute the correlation score | |
1169 for ( i = 0 ; i < size ; ++i ) | |
1170 { | |
1171 std::vector<int> subexonInd ; | |
1172 transcripts[i].seVector.GetOnesIndices( subexonInd ) ; | |
1173 double cor = 2.0 ; | |
1174 int s = subexonInd.size() ; | |
1175 for ( j = 0 ; j < s ; ++j ) | |
1176 for ( k = j + 1 ; k < s ; ++k ) | |
1177 { | |
1178 double tmp = correlation.Query( subexonInd[j], subexonInd[k] ) ; | |
1179 if ( tmp < cor ) | |
1180 cor = tmp ; | |
1181 } | |
1182 if ( cor > 1 ) | |
1183 cor = 0 ; | |
1184 transcripts[i].correlationScore = cor ; | |
1185 } | |
1186 | |
1187 // store the result | |
1188 for ( i = 0 ; i < size ; ++i ) | |
1189 alltranscripts.push_back( transcripts[i] ) ; | |
1190 | |
1191 // Release the memory | |
1192 for ( std::map<double, struct _dp>::iterator it = cachedCoverResult.begin() ; it != cachedCoverResult.end() ; ++it ) | |
1193 { | |
1194 it->second.seVector.Release() ; | |
1195 } | |
1196 attr.bufferTxpt.seVector.Release() ; | |
1197 | |
1198 delete[] coveredTc ; | |
1199 maxCoverDp.seVector.Release() ; | |
1200 bestDp.seVector.Release() ; | |
1201 } | |
1202 | |
1203 | |
1204 // Add the preifx/suffix of transcripts to the list | |
1205 void TranscriptDecider::AugmentTranscripts( struct _subexon *subexons, std::vector<struct _transcript> &alltranscripts, int limit, bool extend ) | |
1206 { | |
1207 int i, j, k ; | |
1208 int size = alltranscripts.size() ; | |
1209 if ( size >= limit ) | |
1210 return ; | |
1211 | |
1212 // Augment suffix, prefix transcripts | |
1213 for ( i = 0 ; i < size ; ++i ) | |
1214 { | |
1215 std::vector<int> subexonIdx ; | |
1216 alltranscripts[i].seVector.GetOnesIndices( subexonIdx ) ; | |
1217 int seIdxCnt = subexonIdx.size() ; | |
1218 // suffix | |
1219 for ( j = 1 ; j < seIdxCnt ; ++j ) | |
1220 { | |
1221 if ( subexons[ subexonIdx[j] ].canBeStart ) | |
1222 { | |
1223 struct _transcript nt ; | |
1224 nt.first = subexonIdx[j] ; | |
1225 nt.last = alltranscripts[i].last ; | |
1226 nt.seVector.Duplicate( alltranscripts[i].seVector ) ; | |
1227 nt.seVector.MaskRegionOutside( nt.first, nt.last ) ; | |
1228 nt.partial = false ; | |
1229 nt.correlationScore = 0 ; | |
1230 nt.abundance = 0 ; | |
1231 nt.constraintsSupport = NULL ; | |
1232 | |
1233 alltranscripts.push_back( nt ) ; | |
1234 if ( alltranscripts.size() >= limit ) | |
1235 return ; | |
1236 } | |
1237 } | |
1238 | |
1239 // prefix | |
1240 for ( j = 0 ; j < seIdxCnt - 1 ; ++j ) | |
1241 { | |
1242 if ( subexons[ subexonIdx[j] ].canBeEnd ) | |
1243 { | |
1244 struct _transcript nt ; | |
1245 nt.first = alltranscripts[i].first ; | |
1246 nt.last = subexonIdx[j] ; | |
1247 nt.seVector.Duplicate( alltranscripts[i].seVector ) ; | |
1248 nt.seVector.MaskRegionOutside( nt.first, nt.last ) ; | |
1249 nt.partial = false ; | |
1250 nt.correlationScore = 0 ; | |
1251 nt.abundance = 0 ; | |
1252 nt.constraintsSupport = NULL ; | |
1253 | |
1254 alltranscripts.push_back( nt ) ; | |
1255 if ( alltranscripts.size() >= limit ) | |
1256 return ; | |
1257 } | |
1258 } | |
1259 | |
1260 if ( extend ) | |
1261 { | |
1262 //Extentions right. | |
1263 for ( j = 0 ; j < seIdxCnt ; ++j ) | |
1264 { | |
1265 if ( subexons[ subexonIdx[j] ].nextCnt > 1 ) | |
1266 { | |
1267 for ( k = 0 ; k < subexons[ subexonIdx[j] ].nextCnt ; ++k ) | |
1268 { | |
1269 int idx = subexons[ subexonIdx[j] ].next[k] ; | |
1270 | |
1271 if ( alltranscripts[i].seVector.Test( idx ) ) | |
1272 continue ; | |
1273 int l ; | |
1274 std::vector<int> visited ; | |
1275 while ( 1 ) | |
1276 { | |
1277 if ( subexons[idx].nextCnt > 1 || subexons[idx].prevCnt > 1 ) | |
1278 { | |
1279 break ; | |
1280 } | |
1281 | |
1282 visited.push_back( idx ) ; | |
1283 if ( subexons[idx].canBeEnd && subexons[idx].nextCnt == 0 ) | |
1284 { | |
1285 struct _transcript nt ; | |
1286 nt.first = alltranscripts[i].first ; | |
1287 nt.last = idx ; | |
1288 nt.seVector.Duplicate( alltranscripts[i].seVector ) ; | |
1289 nt.seVector.MaskRegionOutside( nt.first, subexonIdx[j] ) ; | |
1290 int visitedSize = visited.size() ; | |
1291 for ( l = 0 ; l < visitedSize ; ++l ) | |
1292 nt.seVector.Set( visited[l] ) ; | |
1293 nt.partial = false ; | |
1294 nt.correlationScore = 0 ; | |
1295 nt.abundance = 0 ; | |
1296 nt.constraintsSupport = NULL ; | |
1297 | |
1298 alltranscripts.push_back( nt ) ; | |
1299 if ( alltranscripts.size() >= limit ) | |
1300 return ; | |
1301 } | |
1302 | |
1303 if ( subexons[idx].nextCnt == 1 ) | |
1304 idx = subexons[idx].next[0] ; | |
1305 else | |
1306 break ; | |
1307 } | |
1308 } | |
1309 } | |
1310 } | |
1311 | |
1312 // Extension towards left | |
1313 for ( j = 0 ; j < seIdxCnt ; ++j ) | |
1314 { | |
1315 if ( subexons[ subexonIdx[j] ].prevCnt > 1 ) | |
1316 { | |
1317 for ( k = 0 ; k < subexons[ subexonIdx[j] ].prevCnt ; ++k ) | |
1318 { | |
1319 int idx = subexons[ subexonIdx[j] ].prev[k] ; | |
1320 | |
1321 if ( alltranscripts[i].seVector.Test( idx ) ) | |
1322 continue ; | |
1323 int l ; | |
1324 std::vector<int> visited ; | |
1325 while ( 1 ) | |
1326 { | |
1327 if ( subexons[idx].nextCnt > 1 || subexons[idx].prevCnt > 1 ) | |
1328 { | |
1329 break ; | |
1330 } | |
1331 | |
1332 visited.push_back( idx ) ; | |
1333 if ( subexons[idx].canBeStart && subexons[idx].prevCnt == 0 ) | |
1334 { | |
1335 struct _transcript nt ; | |
1336 nt.first = idx ; | |
1337 nt.last = alltranscripts[i].last ; | |
1338 nt.seVector.Duplicate( alltranscripts[i].seVector ) ; | |
1339 nt.seVector.MaskRegionOutside( subexonIdx[j], nt.last ) ; | |
1340 int visitedSize = visited.size() ; | |
1341 for ( l = 0 ; l < visitedSize ; ++l ) | |
1342 nt.seVector.Set( visited[l] ) ; | |
1343 nt.partial = false ; | |
1344 nt.correlationScore = 0 ; | |
1345 nt.abundance = 0 ; | |
1346 nt.constraintsSupport = NULL ; | |
1347 | |
1348 alltranscripts.push_back( nt ) ; | |
1349 if ( alltranscripts.size() >= limit ) | |
1350 return ; | |
1351 } | |
1352 | |
1353 if ( subexons[idx].prevCnt == 1 ) | |
1354 idx = subexons[idx].prev[0] ; | |
1355 else | |
1356 break ; | |
1357 } | |
1358 } | |
1359 } | |
1360 } | |
1361 } // for if-extend | |
1362 } | |
1363 | |
1364 CoalesceSameTranscripts( alltranscripts ) ; | |
1365 } | |
1366 | |
1367 // Pick the transcripts from given transcripts. | |
1368 void TranscriptDecider::PickTranscripts( struct _subexon *subexons, std::vector<struct _transcript> &alltranscripts, Constraints &constraints, | |
1369 SubexonCorrelation &seCorrelation, std::vector<struct _transcript> &transcripts ) | |
1370 { | |
1371 int i, j, k ; | |
1372 std::vector<int> chosen ; | |
1373 std::vector<struct _matePairConstraint> &tc = constraints.matePairs ; | |
1374 int atcnt = alltranscripts.size() ; | |
1375 int tcCnt = tc.size() ; // transcript constraints | |
1376 int seCnt = 0 ; | |
1377 | |
1378 if ( tcCnt == 0 ) | |
1379 return ; | |
1380 if ( atcnt > 0 ) | |
1381 seCnt = alltranscripts[0].seVector.GetSize() ; | |
1382 else | |
1383 return ; | |
1384 | |
1385 double inf = -1 ; // infinity | |
1386 int coalesceThreshold = 1024 ; | |
1387 int *transcriptSeCnt = new int[ atcnt ] ; | |
1388 int *transcriptLength = new int[atcnt] ; | |
1389 double *transcriptAbundance = new double[atcnt] ; // the roughly estimated abundance based on constraints. | |
1390 double *avgTranscriptAbundance = new double[atcnt] ; // the average normAbund from the compatible constraints. | |
1391 | |
1392 BitTable *btable = new BitTable[ atcnt ] ; | |
1393 //BitTable lowCovSubexon ; // force the abundance to 0 for the transcript contains the subexon. | |
1394 double *coveredPortion = new double[atcnt] ; | |
1395 | |
1396 memset( avgTranscriptAbundance, 0 ,sizeof( double ) * atcnt ) ; | |
1397 for ( i = 0 ; i < atcnt ; ++i ) | |
1398 btable[i].Init( tcCnt ) ; | |
1399 for ( j = 0 ; j < tcCnt ; ++j ) | |
1400 { | |
1401 int a = constraints.matePairs[j].i ; | |
1402 int b = constraints.matePairs[j].j ; | |
1403 | |
1404 if ( constraints.constraints[a].support > inf ) | |
1405 inf = constraints.constraints[a].support ; | |
1406 if ( constraints.constraints[b].support > inf ) | |
1407 inf = constraints.constraints[b].support ; | |
1408 | |
1409 if ( tc[j].normAbund > inf ) | |
1410 inf = tc[j].normAbund ; | |
1411 | |
1412 tc[j].abundance = tc[j].normAbund ; | |
1413 } | |
1414 ++inf ; | |
1415 bool btableSet = false ; | |
1416 for ( i = 0 ; i < atcnt ; ++i ) | |
1417 { | |
1418 //printf( "correlation %d: %lf\n", i, alltranscripts[i].correlationScore ) ; | |
1419 /*for ( int l = 0 ; l < subexonInd.size() ; ++l ) | |
1420 { | |
1421 for ( int m = l ; m < subexonInd.size() ; ++m ) | |
1422 printf( "%lf ", seCorrelation.Query( l, m ) ) ; | |
1423 printf( "\n" ) ; | |
1424 }*/ | |
1425 | |
1426 for ( j = 0 ; j < tcCnt ; ++j ) | |
1427 { | |
1428 int a = tc[j].i ; | |
1429 int b = tc[j].j ; | |
1430 | |
1431 //printf( "try set btble[ %d ].Set( %d ): %d %d\n", i, j, a, b ) ; | |
1432 //alltranscripts[i].seVector.Print() ; | |
1433 //constraints.constraints[a].vector.Print() ; | |
1434 //constraints.constraints[b].vector.Print() ; | |
1435 if ( IsConstraintInTranscript( alltranscripts[i], constraints.constraints[a] ) == 1 | |
1436 && IsConstraintInTranscript( alltranscripts[i], constraints.constraints[b] ) == 1 ) | |
1437 { | |
1438 //printf( "set btble[ %d ].Set( %d ): %d %d\n", i, j, a, b ) ; | |
1439 btable[i].Set( j ) ; | |
1440 btableSet = true ; | |
1441 } | |
1442 } | |
1443 transcriptSeCnt[i] = alltranscripts[i].seVector.Count() ; | |
1444 } | |
1445 if ( btableSet == false ) | |
1446 { | |
1447 for ( i = 0 ; i < atcnt ; ++i ) | |
1448 btable[i].Release() ; | |
1449 delete[] btable ; | |
1450 return ; | |
1451 } | |
1452 | |
1453 double maxAbundance = -1 ; // The abundance of the most-abundant transcript | |
1454 double *adjustScore = new double[atcnt] ; | |
1455 memset( adjustScore, 0, sizeof( double ) * atcnt ) ; | |
1456 if ( atcnt > 0 /*&& alltranscripts[0].abundance == -1*/ ) | |
1457 { | |
1458 struct _pair32 *chain = new struct _pair32[seCnt] ; | |
1459 bool *covered = new bool[seCnt] ; | |
1460 bool *usedConstraints = new bool[constraints.constraints.size() ] ; | |
1461 std::vector<BitTable> togetherChain ; // those subexons is more likely to show up in the same transcript, like an IR with overhang, should be together to represent a 3'/5'-end | |
1462 | |
1463 /*lowCovSubexon.Init( seCnt ) ; | |
1464 double *avgDepth = new double[seCnt ] ; | |
1465 | |
1466 memset( avgDepth, 0, sizeof( double ) * seCnt ) ; | |
1467 int size = constraints.constraints.size() ; | |
1468 for ( i = 0 ; i < size ; ++i ) | |
1469 { | |
1470 std::vector<int> subexonIdx ; | |
1471 constraints.constraints[i].GetOnesIndices( subexonIdx ) ; | |
1472 int seIdxCnt = subexonidx.size() ; | |
1473 for ( j = 0 ; j < seIdxCnt ; ++j ) | |
1474 avgDepth[ subexonidx[j] ] += constraints.constraints[i].support ; | |
1475 } | |
1476 for ( i = 0 ; i < seCnt ; ++i ) | |
1477 { | |
1478 if ( avgDepth[i] * alignments.readLen / (double)( subexons[i].end - subexons[i].start + 1 ) < 1 ) | |
1479 }*/ | |
1480 | |
1481 struct _pair32 firstRegion, lastRegion ; | |
1482 | |
1483 for ( i = 0 ; i < seCnt ; ) | |
1484 { | |
1485 for ( j = i + 1 ; j < seCnt ; ++j ) | |
1486 { | |
1487 if ( subexons[j].start > subexons[j - 1].end + 1 ) | |
1488 break ; | |
1489 } | |
1490 | |
1491 | |
1492 int cnt = 0 ; | |
1493 for ( k = i ; k < j ; ++k ) | |
1494 { | |
1495 if ( ( subexons[k].leftType == 2 && subexons[k].rightType == 1 ) | |
1496 || ( subexons[k].leftType == 0 && subexons[k].rightType == 1 ) | |
1497 || ( subexons[k].leftType == 2 && subexons[k].rightType == 0 ) ) | |
1498 ++cnt ; | |
1499 } | |
1500 | |
1501 if ( cnt <= 1 ) | |
1502 { | |
1503 i = j ; | |
1504 continue ; | |
1505 } | |
1506 | |
1507 BitTable tmpTable( seCnt ) ; | |
1508 for ( k = i ; k < j ; ++k ) | |
1509 { | |
1510 if ( ( subexons[k].leftType == 2 && subexons[k].rightType == 1 ) | |
1511 || ( subexons[k].leftType == 0 && subexons[k].rightType == 1 ) | |
1512 || ( subexons[k].leftType == 2 && subexons[k].rightType == 0 ) ) | |
1513 tmpTable.Set( k ) ; | |
1514 } | |
1515 togetherChain.push_back( tmpTable ) ; | |
1516 i = j ; | |
1517 } | |
1518 | |
1519 for ( i = 0 ; i < atcnt ; ++i ) | |
1520 { | |
1521 double value = inf ; | |
1522 int tag = -1 ; | |
1523 | |
1524 alltranscripts[i].abundance = 0 ; | |
1525 alltranscripts[i].constraintsSupport = new double[tcCnt] ; | |
1526 | |
1527 std::vector<int> subexonIdx ; | |
1528 alltranscripts[i].seVector.GetOnesIndices( subexonIdx ) ; | |
1529 int seIdxCnt = subexonIdx.size() ; | |
1530 transcriptLength[i] = 0 ; | |
1531 | |
1532 firstRegion.a = subexonIdx[0] ; | |
1533 for ( j = 1 ; j < seIdxCnt ; ++j ) | |
1534 { | |
1535 if ( subexons[ subexonIdx[j] ].start > subexons[ subexonIdx[j - 1] ].end + 1 ) | |
1536 break ; | |
1537 } | |
1538 firstRegion.b = subexonIdx[j - 1] ; | |
1539 lastRegion.b = subexonIdx[ seIdxCnt - 1 ] ; | |
1540 for ( j = seIdxCnt - 2 ; j >= 0 ; --j ) | |
1541 { | |
1542 if ( subexons[ subexonIdx[j] ].end < subexons[ subexonIdx[j + 1] ].start - 1 ) | |
1543 break ; | |
1544 } | |
1545 lastRegion.a = subexonIdx[j + 1] ; | |
1546 | |
1547 for ( j = 0 ; j < seIdxCnt ; ++j ) | |
1548 transcriptLength[i] += subexons[ subexonIdx[j] ].end - subexons[ subexonIdx[j] ].start + 1 ; | |
1549 | |
1550 //for ( j = firstRegion.b ; j < lastRegion.a ; ++j ) | |
1551 for ( j = 0 ; j < seIdxCnt - 1 ; ++j ) | |
1552 { | |
1553 chain[j].a = subexonIdx[j] ; | |
1554 chain[j].b = subexonIdx[j + 1] ; | |
1555 covered[j] = false ; | |
1556 } | |
1557 memset( usedConstraints, false, sizeof( bool ) * constraints.constraints.size() ) ; | |
1558 int compatibleCnt = 0 ; | |
1559 for ( j = 0 ; j < tcCnt ; ++j ) | |
1560 { | |
1561 alltranscripts[i].constraintsSupport[j] = 0 ; | |
1562 if ( btable[i].Test(j) && tc[j].abundance > 0 ) | |
1563 { | |
1564 ++compatibleCnt ; | |
1565 double adjustAbundance = tc[j].abundance ; | |
1566 if ( seIdxCnt > 1 ) | |
1567 { | |
1568 if ( tc[j].i == tc[j].j | |
1569 && ( constraints.constraints[ tc[j].i ].first + | |
1570 constraints.constraints[ tc[j].i ].last == 2 * alltranscripts[i].first | |
1571 || constraints.constraints[ tc[j].i ].first + | |
1572 constraints.constraints[ tc[j].i ].last == 2 * alltranscripts[i].last ) ) | |
1573 { | |
1574 adjustAbundance = inf ; | |
1575 } | |
1576 else if ( tc[j].i != tc[j].j | |
1577 && ( constraints.constraints[ tc[j].i ].first + | |
1578 constraints.constraints[ tc[j].i ].last == 2 * alltranscripts[i].first | |
1579 || constraints.constraints[ tc[j].i ].first + | |
1580 constraints.constraints[ tc[j].i ].last == 2 * alltranscripts[i].last ) ) | |
1581 { | |
1582 adjustAbundance = constraints.constraints[ tc[j].j ].normAbund ; | |
1583 } | |
1584 else if ( tc[j].i != tc[j].j | |
1585 && ( constraints.constraints[ tc[j].j ].first + | |
1586 constraints.constraints[ tc[j].j ].last == 2 * alltranscripts[i].first | |
1587 || constraints.constraints[ tc[j].j ].first + | |
1588 constraints.constraints[ tc[j].j ].last == 2 * alltranscripts[i].last ) ) | |
1589 { | |
1590 adjustAbundance = constraints.constraints[ tc[j].i ].normAbund ; | |
1591 } | |
1592 } | |
1593 if ( adjustAbundance < value ) | |
1594 /*!( seIdxCnt > 1 | |
1595 && ( ( ( constraints.constraints[ tc[j].i ].first >= firstRegion.a && constraints.constraints[ tc[j].i ].last <= firstRegion.b ) | |
1596 && ( constraints.constraints[ tc[j].j ].first >= firstRegion.a && constraints.constraints[ tc[j].j ].last <= firstRegion.b ) ) | |
1597 || ( ( constraints.constraints[ tc[j].i ].first >= lastRegion.a && constraints.constraints[ tc[j].i ].last <= lastRegion.b ) | |
1598 && ( constraints.constraints[ tc[j].j ].first >= lastRegion.a && constraints.constraints[ tc[j].j ].last <= lastRegion.b ) ) ) ) | |
1599 )*/ | |
1600 { | |
1601 // Not use the constraints totally within the 3'/5'-end in the transcript | |
1602 value = adjustAbundance ; | |
1603 tag = j ; | |
1604 } | |
1605 avgTranscriptAbundance[i] += tc[j].abundance ; | |
1606 | |
1607 if ( !usedConstraints[ tc[j].i ] ) | |
1608 { | |
1609 struct _constraint &c = constraints.constraints[ tc[j].i ] ; | |
1610 for ( k = 0 ; k < seIdxCnt - 1 ; ++k ) | |
1611 { | |
1612 // Note that since the constraint is already compatible with the txpt, | |
1613 // chain[k].a/b must be also adjacent in this constraint. | |
1614 if ( c.vector.Test( chain[k].a ) && c.vector.Test( chain[k].b ) ) | |
1615 covered[k] = true ; | |
1616 } | |
1617 usedConstraints[ tc[j].i ] = true ; | |
1618 } | |
1619 | |
1620 if ( !usedConstraints[ tc[j].j ] ) | |
1621 { | |
1622 struct _constraint &c = constraints.constraints[ tc[j].j ] ; | |
1623 for ( k = 0 ; k < seIdxCnt - 1 ; ++k ) | |
1624 { | |
1625 if ( c.vector.Test( chain[k].a ) && c.vector.Test( chain[k].b ) ) | |
1626 covered[k] = true ; | |
1627 } | |
1628 usedConstraints[ tc[j].j ] = true ; | |
1629 } | |
1630 } | |
1631 } | |
1632 | |
1633 // Get some penalty if something should together did not show up together | |
1634 int size = togetherChain.size() ; | |
1635 if ( size > 0 ) | |
1636 { | |
1637 BitTable bufferTable( seCnt ) ; | |
1638 for ( j = 0 ; j < size ; ++j ) | |
1639 { | |
1640 bufferTable.Assign( togetherChain[j] ) ; | |
1641 bufferTable.And( alltranscripts[i].seVector ) ; | |
1642 //if ( !bufferTable.IsAllZero() && !bufferTable.IsEqual( togetherChain[j] ) ) | |
1643 // value /= 2 ; | |
1644 | |
1645 if ( !bufferTable.IsAllZero() ) | |
1646 { | |
1647 if ( bufferTable.IsEqual( togetherChain[j] ) ) | |
1648 //printf( "nice together!\n" ) ; | |
1649 ; | |
1650 else | |
1651 value /= 2 ; | |
1652 //printf( "bad together!\n" ) ; | |
1653 } | |
1654 } | |
1655 bufferTable.Release() ; | |
1656 } | |
1657 | |
1658 | |
1659 // Every two-subexon chain should be covered by some reads if a transcript is expressed highly enough | |
1660 int cnt = 0 ; | |
1661 for ( j = 0 ; j < seIdxCnt - 1 ; ++j ) | |
1662 if ( covered[j] == false ) // && j >= firstRegion.b && j <= lastRegion.a - 1 ) | |
1663 { | |
1664 value = 0 ; | |
1665 } | |
1666 else | |
1667 ++cnt ; | |
1668 if ( seIdxCnt > 1 ) | |
1669 coveredPortion[i] = (double)cnt / (double)( seIdxCnt - 1 ) ; | |
1670 else | |
1671 coveredPortion[i] = 1 ; | |
1672 if ( coveredPortion[i] == 0 ) | |
1673 coveredPortion[i] = (double)0.5 / ( seIdxCnt ) ; | |
1674 | |
1675 // For short subexon (readLength-subexon_length-1>30), we further require a constraint cover three conseuctive subexon | |
1676 /*memset( usedConstraints, false, sizeof( bool ) * constraints.constraints.size() ) ; | |
1677 for ( j = 1 ; j < seIdxCnt - 1 ; ++j ) | |
1678 { | |
1679 int k = subexonIdx[j] ; | |
1680 if ( alignments.readLen - ( subexons[k].end - subexons[k].start + 1 ) - 1 <= 30 ) | |
1681 continue ; | |
1682 // We need at least one of the side subexons are adjacent to the center one. | |
1683 if ( subexons[ subexonIdx[j - 1] ].end + 1 < subexons[k].start && subexons[k].end + 1 < subexons[ subexonIdx[j + 1] ].start ) | |
1684 continue ; | |
1685 | |
1686 int l = 0 ; | |
1687 for ( l = 0 ; l < tcCnt ; ++l ) | |
1688 { | |
1689 if ( btable[i].Test(l) && tc[l].abundance > 0 ) | |
1690 { | |
1691 if ( !usedConstraints[ tc[l].i ] ) | |
1692 { | |
1693 struct _constraint &c = constraints.constraints[ tc[l].i ] ; | |
1694 if ( c.vector.Test( subexonIdx[j - 1] ) && c.vector.Test( subexonIdx[j] ) && | |
1695 c.vector.Test( subexonIdx[j + 1] ) ) | |
1696 break ; | |
1697 usedConstraints[ tc[l].i ] = true ; | |
1698 } | |
1699 | |
1700 if ( !usedConstraints[ tc[l].j ] ) | |
1701 { | |
1702 struct _constraint &c = constraints.constraints[ tc[l].j ] ; | |
1703 if ( c.vector.Test( subexonIdx[j - 1] ) && c.vector.Test( subexonIdx[j] ) && | |
1704 c.vector.Test( subexonIdx[j + 1] ) ) | |
1705 break ; | |
1706 usedConstraints[ tc[l].j ] = true ; | |
1707 } | |
1708 } | |
1709 } | |
1710 // It is not covered | |
1711 if ( l >= tcCnt ) | |
1712 { | |
1713 int residual = alignments.readLen - ( subexons[k].end - subexons[k].start + 1 ) - 1 ; | |
1714 //printf( "residual: %d %d %lf\n", k, residual, value ) ; | |
1715 if ( value * residual > 2 ) | |
1716 { | |
1717 value = 1 / (double)residual ; | |
1718 } | |
1719 } | |
1720 }*/ | |
1721 | |
1722 if ( tag == -1 ) | |
1723 value = 0 ; | |
1724 if ( value > maxAbundance ) | |
1725 maxAbundance = value ; | |
1726 transcriptAbundance[i] = value ; | |
1727 if ( tag != -1 ) | |
1728 avgTranscriptAbundance[i] /= compatibleCnt ; | |
1729 | |
1730 //printf( "abundance %d: %lf %lf ", i, value, avgTranscriptAbundance[i] ) ; | |
1731 //alltranscripts[i].seVector.Print() ; | |
1732 } | |
1733 if ( maxAbundance == 0 ) | |
1734 { | |
1735 for ( i = 0 ; i < atcnt ; ++i ) | |
1736 { | |
1737 transcriptAbundance[i] = coveredPortion[i] ; | |
1738 } | |
1739 maxAbundance = 1 ; | |
1740 } | |
1741 //printf( "%s: %lf\n", __func__, maxAbundance ) ; | |
1742 int size = togetherChain.size() ; | |
1743 for ( j = 0 ; j < size ; ++j ) | |
1744 togetherChain[j].Release() ; | |
1745 delete[] usedConstraints ; | |
1746 delete[] covered ; | |
1747 delete[] chain ; | |
1748 } | |
1749 else | |
1750 { | |
1751 for ( i = 0 ; i < atcnt ; ++i ) | |
1752 { | |
1753 transcriptAbundance[i] = alltranscripts[i].abundance ; | |
1754 if ( transcriptAbundance[i] > maxAbundance ) | |
1755 maxAbundance = transcriptAbundance[i] ; | |
1756 coveredPortion[i] = 1 ; | |
1757 } | |
1758 if ( maxAbundance == 0 ) | |
1759 maxAbundance = 1 ; | |
1760 } | |
1761 | |
1762 // Obtain the prefix, suffix information of the transcripts. | |
1763 int *nextSuffix, *nextPrefix ; | |
1764 struct _pair32 *txptRank ; | |
1765 nextSuffix = new int[atcnt] ; | |
1766 nextPrefix = new int[atcnt] ; | |
1767 txptRank = new struct _pair32[atcnt] ; | |
1768 memset( nextSuffix, -1, sizeof( int ) * atcnt ) ; | |
1769 memset( nextPrefix, -1, sizeof( int ) * atcnt ) ; | |
1770 /*for ( i = 0 ; i < atcnt ; ++i ) | |
1771 { | |
1772 std::vector<int> subexonIdx ; | |
1773 txptRank[i].a = i ; | |
1774 alltranscripts[i].seVector.GetOnesIndices( subexonIdx ) ; | |
1775 txptRank[i].b = subexonIdx.size() ; | |
1776 } | |
1777 qsort( txptRank, atcnt, sizeof( struct _pair32 ), CompPairsByB) ; | |
1778 BitTable bufferTable( seCnt ) ; | |
1779 for ( i = atcnt - 1 ; i >= 0 ; --i ) | |
1780 { | |
1781 int a = txptRank[i].a ; | |
1782 for ( j = i - 1 ; j >= 0 ; --j ) | |
1783 { | |
1784 if ( txptRank[i].b == txptRank[j].b ) | |
1785 continue ; | |
1786 | |
1787 int b = txptRank[j].a ; | |
1788 | |
1789 if ( alltranscripts[b].last != alltranscripts[a].last ) | |
1790 continue ; | |
1791 | |
1792 bufferTable.Assign( alltranscripts[a].seVector ) ; | |
1793 bufferTable.MaskRegionOutside( alltranscripts[b].first, alltranscripts[b].last ) ; | |
1794 if ( bufferTable.IsEqual( alltranscripts[b].seVector ) ) | |
1795 { | |
1796 nextSuffix[a] = b ; | |
1797 break ; | |
1798 } | |
1799 } | |
1800 } | |
1801 for ( i = atcnt - 1 ; i >= 0 ; --i ) | |
1802 { | |
1803 int a = txptRank[i].a ; | |
1804 for ( j = i - 1 ; j >= 0 ; --j ) | |
1805 { | |
1806 if ( txptRank[i].b == txptRank[j].b ) | |
1807 continue ; | |
1808 | |
1809 int b = txptRank[j].a ; | |
1810 | |
1811 if ( alltranscripts[b].first != alltranscripts[a].first ) | |
1812 continue ; | |
1813 | |
1814 bufferTable.Assign( alltranscripts[a].seVector ) ; | |
1815 bufferTable.MaskRegionOutside( alltranscripts[b].first, alltranscripts[b].last ) ; | |
1816 if ( bufferTable.IsEqual( alltranscripts[b].seVector ) ) | |
1817 { | |
1818 nextPrefix[a] = b ; | |
1819 break ; | |
1820 } | |
1821 } | |
1822 } | |
1823 | |
1824 bufferTable.Release() ;*/ | |
1825 delete[] txptRank ; | |
1826 | |
1827 // Quantative Set-Cover | |
1828 int iterCnt = -1 ; | |
1829 double *coverCnt = new double[atcnt] ; | |
1830 for ( i = 0 ; i < atcnt ; ++i ) | |
1831 coverCnt[i] = -1 ; | |
1832 int *list = new int[atcnt] ; | |
1833 int listCnt ; | |
1834 | |
1835 while ( 1 ) | |
1836 { | |
1837 double max = -1 ; | |
1838 int maxtag = -1 ; | |
1839 double maxcnt = -1 ; | |
1840 ++iterCnt ; | |
1841 | |
1842 // Find the optimal candidate. | |
1843 for ( i = 0 ; i < atcnt ; ++i ) | |
1844 { | |
1845 double value = inf ; | |
1846 double cnt = 0 ; | |
1847 | |
1848 if ( coverCnt[i] == -1 ) | |
1849 { | |
1850 for ( j = 0 ; j < tcCnt ; ++j ) | |
1851 { | |
1852 if ( tc[j].abundance > 0 && btable[i].Test( j ) ) | |
1853 { | |
1854 cnt += tc[j].effectiveCount ; | |
1855 } | |
1856 } | |
1857 /*else | |
1858 { | |
1859 std::vector<int> tcIdx ; | |
1860 btable[i].GetOnesIndices( tcIdx ) ; | |
1861 int size = tcIdx.size() ; | |
1862 for ( j = 0 ; j < size ; ++j ) | |
1863 { | |
1864 if ( tc[ tcIdx[j] ].abundance > 0 ) | |
1865 { | |
1866 cnt += tc[ tcIdx[j] ].effectiveCount ; | |
1867 } | |
1868 } | |
1869 }*/ | |
1870 coverCnt[i] = cnt ; | |
1871 } | |
1872 else | |
1873 { | |
1874 cnt = coverCnt[i] ; | |
1875 } | |
1876 | |
1877 value = transcriptAbundance[i] ; | |
1878 if ( cnt < 1 ) // This transcript does not satisfy any undepleted constraints. | |
1879 continue ; | |
1880 cnt *= coveredPortion[i] ; | |
1881 | |
1882 double weight = 1 ; //* seCnt / transcriptSeCnt[i] ; | |
1883 //if ( maxAbundance >= 1 && value / maxAbundance >= 0.2 ) | |
1884 // seCntAdjust = sqrt( (double)( transcriptSeCnt[i] ) / seCnt ) ;//< 0.5 ? 0.5 : (double)( transcriptSeCnt[i] ) / seCnt ; | |
1885 | |
1886 if ( alltranscripts[i].FPKM > 0 && sampleCnt > 1 ) | |
1887 weight = ( 1 + alltranscripts[i].FPKM / sampleCnt ) ; | |
1888 | |
1889 double score = ComputeScore( cnt, weight, value, maxAbundance, alltranscripts[i].correlationScore ) ; | |
1890 if ( cnt > maxcnt ) | |
1891 maxcnt = cnt ; | |
1892 score += adjustScore[i] ; | |
1893 if ( score > max ) | |
1894 { | |
1895 max = score ; | |
1896 maxtag = i ; | |
1897 } | |
1898 else if ( score == max ) | |
1899 { | |
1900 if ( avgTranscriptAbundance[maxtag] < avgTranscriptAbundance[i] ) | |
1901 { | |
1902 max = score ; | |
1903 maxtag = i ; | |
1904 } | |
1905 } | |
1906 //printf( "score: %d %lf -> %lf\n", i, cnt, score ) ; | |
1907 } | |
1908 | |
1909 if ( maxcnt == 0 || maxtag == -1 ) | |
1910 break ; | |
1911 | |
1912 // Find the constraint that should be depleted. | |
1913 double update = inf ; | |
1914 int updateTag = 0 ; | |
1915 for ( j = 0 ; j < tcCnt ; ++j ) | |
1916 { | |
1917 if ( btable[ maxtag ].Test( j ) && tc[j].abundance > 0 && | |
1918 tc[j].abundance <= update ) | |
1919 { | |
1920 update = tc[j].abundance ; | |
1921 updateTag = j ; | |
1922 } | |
1923 } | |
1924 | |
1925 // Search suffix and prefix to see whether these fit better. | |
1926 int p = nextSuffix[ maxtag] ; | |
1927 while ( p != -1 ) | |
1928 { | |
1929 if ( transcriptAbundance[p] >= 10.0 * transcriptAbundance[maxtag] | |
1930 && btable[p].Test( updateTag ) ) | |
1931 { | |
1932 //printf( "%d\n", p ) ; | |
1933 maxtag = p ; | |
1934 break ; | |
1935 } | |
1936 p = nextSuffix[p] ; | |
1937 } | |
1938 p = nextPrefix[maxtag] ; | |
1939 while ( p != -1 ) | |
1940 { | |
1941 if ( transcriptAbundance[p] >= 10.0 * transcriptAbundance[maxtag] | |
1942 && btable[p].Test( updateTag ) ) | |
1943 { | |
1944 maxtag = p ; | |
1945 break ; | |
1946 } | |
1947 p = nextPrefix[p] ; | |
1948 } | |
1949 | |
1950 | |
1951 // Update the abundance. | |
1952 int supportCnt = 0 ; | |
1953 for ( j = 0 ; j < tcCnt ; ++j ) | |
1954 { | |
1955 if ( btable[maxtag].Test( j ) ) | |
1956 { | |
1957 if ( tc[j].abundance > 0 ) | |
1958 { | |
1959 tc[j].abundance -= 1 * update ; | |
1960 double factor = tc[j].effectiveCount ; | |
1961 double tmp = ( tc[j].support * update / tc[j].normAbund * factor ) ; | |
1962 alltranscripts[maxtag].constraintsSupport[j] += tmp ; | |
1963 alltranscripts[maxtag].abundance += tmp ; | |
1964 | |
1965 if ( tc[j].abundance <= 0 ) | |
1966 { | |
1967 int l ; | |
1968 for ( l = 0 ; l < atcnt ; ++l ) | |
1969 { | |
1970 if ( btable[l].Test(j) ) | |
1971 coverCnt[l] -= tc[j].effectiveCount ; | |
1972 } | |
1973 } | |
1974 ++supportCnt ; | |
1975 } | |
1976 else if ( alltranscripts[maxtag].constraintsSupport[j] == 0 ) | |
1977 { | |
1978 double sum = 0 ; | |
1979 double takeOut = 0 ; | |
1980 double factor = tc[j].effectiveCount ; | |
1981 listCnt = 0 ; | |
1982 for ( i = 0 ; i < atcnt ; ++i ) | |
1983 { | |
1984 if ( i == maxtag ) | |
1985 continue ; | |
1986 | |
1987 if ( alltranscripts[i].abundance > 0 && btable[i].Test(j) ) | |
1988 { | |
1989 sum += alltranscripts[i].constraintsSupport[j] ; | |
1990 | |
1991 double tmp = ( alltranscripts[i].constraintsSupport[j] + alltranscripts[maxtag].constraintsSupport[j] ) * | |
1992 transcriptAbundance[maxtag] / ( transcriptAbundance[maxtag] + transcriptAbundance[i] ) | |
1993 - alltranscripts[maxtag].constraintsSupport[j] ; | |
1994 if ( tmp > 0 ) | |
1995 { | |
1996 list[ listCnt ] = i ; | |
1997 ++listCnt ; | |
1998 takeOut += tmp ; //alltranscripts[i].constraintsSupport[j] * transcriptAbundance[maxtag] / ( transcriptAbundance[maxtag] + transcriptAbundance[i] ) ; | |
1999 } | |
2000 } | |
2001 } | |
2002 | |
2003 double ratio = 1 ; | |
2004 double takeOutFactor = 0.5 ; | |
2005 if ( update < tc[j].normAbund ) | |
2006 { | |
2007 if ( takeOut > ( tc[j].support * update / tc[j].normAbund * factor ) * takeOutFactor ) | |
2008 ratio = ( tc[j].support * update / tc[j].normAbund * factor ) * takeOutFactor / takeOut ; | |
2009 } | |
2010 else | |
2011 { | |
2012 if ( takeOut > ( tc[j].support * factor ) * takeOutFactor ) | |
2013 ratio = ( tc[j].support * factor ) * takeOutFactor / takeOut ; | |
2014 } | |
2015 | |
2016 if ( 1 ) //update < tc[j].normAbund ) | |
2017 { | |
2018 for ( i = 0 ; i < listCnt ; ++i ) | |
2019 { | |
2020 //double tmp = ( tc[j].support * update / tc[j].normAbund * factor ) * | |
2021 // ( alltranscripts[ list[i] ].constraintsSupport[j] / sum ) ; | |
2022 //if ( alltranscripts[ list[i] ].constraintsSupport[j] < tmp ) | |
2023 // printf( "WARNING! %lf %lf, %lf\n", alltranscripts[ list[i] ].constraintsSupport[j], sum, tmp ) ; | |
2024 | |
2025 //double tmp = alltranscripts[ list[i] ].constraintsSupport[j] * transcriptAbundance[maxtag] / ( transcriptAbundance[maxtag] + transcriptAbundance[ list[i] ] ) * ratio ; | |
2026 double tmp = ( ( alltranscripts[ list[i] ].constraintsSupport[j] + alltranscripts[maxtag].constraintsSupport[j] ) * | |
2027 transcriptAbundance[maxtag] / ( transcriptAbundance[maxtag] + transcriptAbundance[ list[i] ] ) | |
2028 - alltranscripts[maxtag].constraintsSupport[j] ) * ratio ; | |
2029 | |
2030 | |
2031 alltranscripts[ list[i] ].constraintsSupport[j] -= tmp ; | |
2032 alltranscripts[ list[i] ].abundance -= tmp ; | |
2033 } | |
2034 //double tmp = ( tc[j].support * update / tc[j].normAbund * factor ) ; | |
2035 //printf( "%lf %lf. %lf %lf\n", takeOut, ratio, update, tc[j].normAbund ) ; | |
2036 double tmp = takeOut * ratio ; | |
2037 alltranscripts[maxtag].constraintsSupport[j] += tmp ; | |
2038 alltranscripts[maxtag].abundance += tmp ; | |
2039 } | |
2040 /*else | |
2041 { | |
2042 double tmp = ( tc[j].support / (double)( listCnt + 1 ) ) * factor ; | |
2043 for ( i = 0 ; i < listCnt ; ++i ) | |
2044 { | |
2045 alltranscripts[ list[i] ].abundance -= alltranscripts[ list[i] ].constraintsSupport[j] ; | |
2046 | |
2047 alltranscripts[ list[i] ].constraintsSupport[j] = tmp ; | |
2048 alltranscripts[ list[i] ].abundance += tmp ; | |
2049 } | |
2050 alltranscripts[maxtag].constraintsSupport[j] += tmp ; | |
2051 alltranscripts[maxtag].abundance += tmp ; | |
2052 }*/ | |
2053 | |
2054 } | |
2055 } | |
2056 | |
2057 if ( tc[j].abundance < 0 ) | |
2058 { | |
2059 tc[j].abundance = 0 ; | |
2060 | |
2061 } | |
2062 } | |
2063 tc[ updateTag ].abundance = 0 ; | |
2064 if ( supportCnt == 0 ) | |
2065 break ; | |
2066 //adjustScore[maxtag] += 1 / (double)tcCnt ; | |
2067 //printf( "maxtag=%d %lf %d\n", maxtag, update, updateTag ) ; | |
2068 } | |
2069 | |
2070 for ( i = 0 ; i < atcnt ; ++i ) | |
2071 { | |
2072 if ( alltranscripts[i].abundance > 0 ) | |
2073 { | |
2074 struct _transcript nt = alltranscripts[i] ; | |
2075 nt.seVector.Nullify() ; | |
2076 nt.seVector.Duplicate( alltranscripts[i].seVector ) ; | |
2077 nt.constraintsSupport = NULL ; | |
2078 if ( transcriptAbundance[i] == 0 ) | |
2079 nt.correlationScore = -1 ; | |
2080 else | |
2081 nt.correlationScore = 0 ; | |
2082 nt.id = i ; | |
2083 transcripts.push_back( nt ) ; | |
2084 } | |
2085 } | |
2086 | |
2087 // Release the memory of btable. | |
2088 for ( i = 0 ; i < atcnt ; ++i ) | |
2089 { | |
2090 delete[] alltranscripts[i].constraintsSupport ; | |
2091 btable[i].Release() ; | |
2092 } | |
2093 delete[] btable ; | |
2094 | |
2095 delete[] list ; | |
2096 delete[] transcriptSeCnt ; | |
2097 delete[] transcriptLength ; | |
2098 delete[] transcriptAbundance ; | |
2099 delete[] avgTranscriptAbundance ; | |
2100 delete[] coveredPortion ; | |
2101 delete[] adjustScore ; | |
2102 delete[] coverCnt ; | |
2103 | |
2104 delete[] nextPrefix ; | |
2105 delete[] nextSuffix ; | |
2106 | |
2107 // Redistribute weight if there is some constraints that are unbalanced. | |
2108 /*tcnt = transcripts.size() ; | |
2109 for ( i = 0 ; i < tcnt ; ++i ) | |
2110 { | |
2111 int maxRatio = -1 ; | |
2112 for ( j = 0 ; j < tcCnt ; ++j ) | |
2113 if ( transcripts[i].constraintsSupport[j] > 0 ) | |
2114 { | |
2115 double factor = tc[j].effectiveCount ; | |
2116 if ( transcripts[]) | |
2117 } | |
2118 }*/ | |
2119 } | |
2120 | |
2121 void TranscriptDecider::AbundanceEstimation( struct _subexon *subexons, int seCnt, Constraints &constraints, std::vector<struct _transcript> &transcripts ) | |
2122 { | |
2123 int tcnt = transcripts.size() ; | |
2124 int size ; | |
2125 int i, j ; | |
2126 if ( tcnt <= 0 ) | |
2127 return ; | |
2128 | |
2129 std::vector<struct _matePairConstraint> &tc = constraints.matePairs ; | |
2130 int tcCnt = tc.size() ; // transcript constraints | |
2131 | |
2132 BitTable *btable = new BitTable[ tcnt ] ; | |
2133 int *transcriptLength = new int[tcnt] ; | |
2134 int *compatibleList = new int[tcnt] ; | |
2135 double *rho = new double[tcnt] ; // the abundance. | |
2136 int iterCnt = 0 ; | |
2137 | |
2138 for ( i = 0 ; i < tcnt ; ++i ) | |
2139 transcripts[i].constraintsSupport = new double[ tcCnt ] ; | |
2140 | |
2141 for ( i = 0 ; i < tcnt ; ++i ) | |
2142 { | |
2143 btable[i].Init( tcCnt ) ; | |
2144 double min = -1 ; | |
2145 for ( j = 0 ; j < tcCnt ; ++j ) | |
2146 { | |
2147 int a = tc[j].i ; | |
2148 int b = tc[j].j ; | |
2149 | |
2150 if ( IsConstraintInTranscript( transcripts[i], constraints.constraints[a] ) == 1 | |
2151 && IsConstraintInTranscript( transcripts[i], constraints.constraints[b] ) == 1 ) | |
2152 { | |
2153 //printf( "set btble[ %d ].Set( %d ): %d %d\n", i, j, a, b ) ; | |
2154 btable[i].Set( j ) ; | |
2155 | |
2156 if ( min == -1 || tc[j].normAbund < min ) | |
2157 min = tc[j].normAbund ; | |
2158 } | |
2159 } | |
2160 | |
2161 std::vector<int> subexonIdx ; | |
2162 transcripts[i].seVector.GetOnesIndices( subexonIdx ) ; | |
2163 int subexonIdxCnt = subexonIdx.size() ; | |
2164 int len = 0 ; | |
2165 for ( j = 0 ; j < subexonIdxCnt ; ++j ) | |
2166 len += subexons[ subexonIdx[j] ].end - subexons[ subexonIdx[j] ].start + 1 ; | |
2167 transcriptLength[i] = len - alignments.fragLen + 2 * alignments.fragStdev ; | |
2168 if ( transcriptLength[i] < 1 ) | |
2169 transcriptLength[i] = 1 ; | |
2170 rho[i] = transcripts[i].abundance / transcriptLength[i] ; // use the rough estimation generated before. | |
2171 if ( transcripts[i].correlationScore == -1 && rho[i] > 0.1 / (double)alignments.readLen ) | |
2172 rho[i] = 0.1 / (double)alignments.readLen ; | |
2173 } | |
2174 | |
2175 while ( 1 ) | |
2176 { | |
2177 for ( i = 0 ; i < tcnt ; ++i ) | |
2178 for ( j = 0 ; j < tcCnt ; ++j ) | |
2179 { | |
2180 transcripts[i].constraintsSupport[j] = 0 ; | |
2181 } | |
2182 for ( j = 0 ; j < tcCnt ; ++j ) | |
2183 { | |
2184 int clCnt = 0 ; | |
2185 double sum = 0 ; | |
2186 for ( i = 0 ; i < tcnt ; ++i ) | |
2187 { | |
2188 if ( btable[i].Test(j) ) | |
2189 { | |
2190 compatibleList[ clCnt ] = i ; | |
2191 ++clCnt ; | |
2192 sum += rho[i] ; | |
2193 } | |
2194 } | |
2195 | |
2196 for ( i = 0 ; i < clCnt ; ++i ) | |
2197 { | |
2198 double factor = tc[j].effectiveCount ; | |
2199 transcripts[ compatibleList[i] ].constraintsSupport[j] = ( rho[ compatibleList[i] ] / sum ) * tc[j].support * factor ; | |
2200 } | |
2201 } | |
2202 | |
2203 double diff = 0 ; | |
2204 for ( i = 0 ; i < tcnt ; ++i ) | |
2205 { | |
2206 double newAbund = 0 ; | |
2207 for ( j = 0 ; j < tcCnt ; ++j ) | |
2208 newAbund += transcripts[i].constraintsSupport[j] ; | |
2209 double old = rho[i] ; | |
2210 rho[i] = newAbund / transcriptLength[i] ; | |
2211 //printf( "rho[%d]=%lf\n", i, rho[i] ) ; | |
2212 if ( transcripts[i].correlationScore == -1 && rho[i] > 0.1 / (double)alignments.readLen ) | |
2213 rho[i] = 0.1 / (double)alignments.readLen ; | |
2214 | |
2215 double tmp = ( old - rho[i] ) ; | |
2216 diff += tmp < 0 ? -tmp : tmp ; | |
2217 } | |
2218 //printf( "%lf\n", diff ) ; | |
2219 if ( diff < 1e-3) | |
2220 break ; | |
2221 | |
2222 ++iterCnt ; | |
2223 if ( iterCnt >= 1000 ) | |
2224 break ; | |
2225 } | |
2226 | |
2227 for ( i = 0 ; i < tcnt ; ++i ) | |
2228 { | |
2229 //printf( "%lf=>", transcripts[i].abundance ) ; | |
2230 transcripts[i].abundance = 0 ; | |
2231 for ( j = 0 ; j < tcCnt ; ++j ) | |
2232 { | |
2233 transcripts[i].abundance += transcripts[i].constraintsSupport[j] ; | |
2234 } | |
2235 //printf( "%lf. (%lf)\n", transcripts[i].abundance, transcripts[i].correlationScore ) ; | |
2236 //transcripts[i].seVector.Print() ; | |
2237 } | |
2238 | |
2239 for ( i = 0 ; i < tcnt ; ++i ) | |
2240 delete[] transcripts[i].constraintsSupport ; | |
2241 | |
2242 // Release the memory of btable. | |
2243 for ( i = 0 ; i < tcnt ; ++i ) | |
2244 { | |
2245 btable[i].Release() ; | |
2246 } | |
2247 delete[] compatibleList ; | |
2248 delete[] btable ; | |
2249 delete[] transcriptLength ; | |
2250 delete[] rho ; | |
2251 } | |
2252 | |
2253 int TranscriptDecider::RefineTranscripts( struct _subexon *subexons, int seCnt, bool aggressive, | |
2254 std::map<int, int> *subexonChainSupport, int *txptSampleSupport, std::vector<struct _transcript> &transcripts, Constraints &constraints ) | |
2255 { | |
2256 int i, j, k ; | |
2257 int tcnt = transcripts.size() ; | |
2258 if ( tcnt == 0 ) | |
2259 return 0 ; | |
2260 int tcCnt = constraints.matePairs.size() ; | |
2261 | |
2262 std::vector<struct _matePairConstraint> &tc = constraints.matePairs ; | |
2263 std::vector<struct _constraint> &scc = constraints.constraints ; //single-end constraints.constraints | |
2264 | |
2265 // Remove transcripts whose FPKM are too small. | |
2266 //printf( "%d %d\n", usedGeneId, baseGeneId ) ; | |
2267 double *geneMaxFPKM = new double[usedGeneId - baseGeneId ] ; | |
2268 int *geneMaxFPKMTag = new int[usedGeneId - baseGeneId ] ; | |
2269 double *nonOverlapMaxFPKM = new double[ usedGeneId - baseGeneId ] ; // the max FPKM among all the transcripts not overlapping with maxFPKMTag transcripts. | |
2270 memset( geneMaxFPKM, 0, sizeof( double ) * ( usedGeneId - baseGeneId ) ) ; | |
2271 memset( geneMaxFPKMTag, 0, sizeof( int ) * ( usedGeneId - baseGeneId ) ) ; | |
2272 memset( nonOverlapMaxFPKM, 0, sizeof( double ) * ( usedGeneId - baseGeneId ) ) ; | |
2273 | |
2274 double *geneMaxCov = new double[ usedGeneId - baseGeneId ] ; | |
2275 memset( geneMaxCov, 0, sizeof( double ) * ( usedGeneId - baseGeneId ) ) ; | |
2276 int *txptGid = new int[tcnt] ; | |
2277 | |
2278 /*for ( i = 0 ; i < tcnt ; ++i ) | |
2279 { | |
2280 printf( "%d: %lf ", i, transcripts[i].FPKM ) ; | |
2281 transcripts[i].seVector.Print() ; | |
2282 }*/ | |
2283 | |
2284 /*================================================================== | |
2285 Remove transcripts that has too few relative FPKM. (-f) | |
2286 ====================================================================*/ | |
2287 for ( i = 0 ; i < tcnt ; ++i ) | |
2288 { | |
2289 int gid = GetTranscriptGeneId( transcripts[i], subexons ) ; | |
2290 int len = GetTranscriptLengthFromAbundanceAndFPKM( transcripts[i].abundance, transcripts[i].FPKM ) ; | |
2291 //printf( "gid=%d\n", gid ) ; | |
2292 //printf( "%lf %lf %d\n", transcripts[i].abundance, transcripts[i].FPKM, len ) ; | |
2293 if ( transcripts[i].FPKM > geneMaxFPKM[gid - baseGeneId ] ) | |
2294 { | |
2295 geneMaxFPKM[ gid - baseGeneId ] = transcripts[i].FPKM ; | |
2296 geneMaxFPKMTag[ gid - baseGeneId ] = i ; | |
2297 } | |
2298 if ( transcripts[i].abundance * alignments.readLen / len > geneMaxCov[gid - baseGeneId ] ) | |
2299 geneMaxCov[gid - baseGeneId] = ( transcripts[i].abundance * alignments.readLen ) / len ; | |
2300 txptGid[i] = gid ; | |
2301 } | |
2302 | |
2303 for ( i = 0 ; i < tcnt ; ++i ) | |
2304 { | |
2305 int tag = txptGid[i] - baseGeneId ; | |
2306 if ( ( transcripts[i].last < transcripts[ geneMaxFPKMTag[ tag ] ].first | |
2307 || transcripts[i].first > transcripts[ geneMaxFPKMTag[tag] ].last ) && transcripts[i].FPKM > nonOverlapMaxFPKM[tag] ) | |
2308 nonOverlapMaxFPKM[tag] = transcripts[i].FPKM ; | |
2309 } | |
2310 BitTable bufferTable ; | |
2311 bufferTable.Duplicate( transcripts[0].seVector ) ; | |
2312 | |
2313 if ( !aggressive ) | |
2314 { | |
2315 // Rescue the transcripts covering unique constraints. | |
2316 int cnt = 0 ; | |
2317 int tag = 0 ; | |
2318 int *uniqCount = new int[tcnt] ; | |
2319 memset( uniqCount, 0, sizeof( int ) * tcnt ) ; | |
2320 for ( j = 0 ; j < tcCnt ; ++j ) | |
2321 { | |
2322 cnt = 0 ; | |
2323 if ( tc[j].uniqSupport <= 5 ) | |
2324 continue ; | |
2325 for ( i = 0 ; i < tcnt ; ++i ) | |
2326 { | |
2327 if ( IsConstraintInTranscript( transcripts[i], scc[ tc[j].i ] ) && | |
2328 IsConstraintInTranscript( transcripts[i], scc[ tc[j].j] ) ) | |
2329 { | |
2330 tag = i ; | |
2331 ++cnt ; | |
2332 } | |
2333 if ( cnt >= 2 ) | |
2334 break ; | |
2335 } | |
2336 if ( cnt == 1 ) | |
2337 { | |
2338 ++uniqCount[tag] ; | |
2339 } | |
2340 } | |
2341 for ( i = 0 ; i < tcnt ; ++i ) | |
2342 { | |
2343 if ( uniqCount[i] >= 2 ) | |
2344 { | |
2345 transcripts[i].abundance *= 4 ; | |
2346 transcripts[i].FPKM *= 4 ; | |
2347 } | |
2348 } | |
2349 | |
2350 delete[] uniqCount ; | |
2351 } | |
2352 | |
2353 int sccCnt = scc.size() ; | |
2354 double filterFactor = 1.0 ; | |
2355 | |
2356 for ( i = 0 ; i < tcnt ; ++i ) | |
2357 { | |
2358 //printf( "%d: %lf %lf\n", txptGid[i], transcripts[i].abundance, geneMaxFPKM[ txptGid[i] - baseGeneId ] ) ; | |
2359 | |
2360 if ( transcripts[i].FPKM < filterFactor * FPKMFraction * geneMaxFPKM[ txptGid[i] - baseGeneId ] ) | |
2361 { | |
2362 /*int cnt = 0 ; | |
2363 int coverCnt = 0 ; | |
2364 for ( j = 0 ; j < tcCnt ; ++j ) | |
2365 { | |
2366 if ( transcripts[i].constraintsSupport[j] > 0 ) | |
2367 ++coverCnt ; | |
2368 double factor = tc[j].effectiveCount ; | |
2369 if ( transcripts[i].constraintsSupport[j] >= factor * tc[j].support - 1e-3 | |
2370 && tc[j].support >= 10 | |
2371 && tc[j].uniqSupport >= 0.95 * tc[j].support ) | |
2372 { | |
2373 ++cnt ; | |
2374 } | |
2375 } | |
2376 //cnt = 0 ; | |
2377 if ( cnt >= 2 ) | |
2378 { | |
2379 ; | |
2380 } | |
2381 else*/ | |
2382 transcripts[i].abundance = -transcripts[i].abundance ; | |
2383 } | |
2384 //if ( transcripts[i].FPKM >= 0.8 * geneMaxFPKM[ txptGid[i] - baseGeneId ] && geneMaxCov[ txptGid[i] - baseGeneId ] >= txptMinReadDepth ) | |
2385 // continue ; | |
2386 } | |
2387 | |
2388 if ( nonOverlapMaxFPKM != 0 ) | |
2389 { | |
2390 // Go two iterations to rescue, the first iteration should be just for marking. | |
2391 std::vector<int> rescueList ; | |
2392 for ( i = 0 ; i < tcnt ; ++i ) | |
2393 { | |
2394 if ( transcripts[i].abundance >= 0 ) | |
2395 continue ; | |
2396 | |
2397 for ( j = 0 ; j < tcnt ; ++j ) | |
2398 { | |
2399 if ( transcripts[j].abundance < 0 || txptGid[i] != txptGid[j] ) | |
2400 continue ; | |
2401 if ( transcripts[i].first <= transcripts[j].last && transcripts[i].last >= transcripts[j].first ) | |
2402 /*bufferTable.Assign( transcripts[i].seVector ) ; | |
2403 bufferTable.And( transcripts[j].seVector ) ; | |
2404 | |
2405 if ( !bufferTable.IsAllZero() )*/ | |
2406 break ; | |
2407 } | |
2408 if ( j >= tcnt && transcripts[i].FPKM >= FPKMFraction * nonOverlapMaxFPKM[ txptGid[i] - baseGeneId ] ) | |
2409 { | |
2410 //transcripts[i].abundance = -transcripts[i].abundance ; | |
2411 rescueList.push_back( i ) ; | |
2412 } | |
2413 } | |
2414 | |
2415 int size = rescueList.size() ; | |
2416 for ( i = 0 ; i < size ; ++i ) | |
2417 transcripts[ rescueList[i] ].abundance *= -1 ; | |
2418 } | |
2419 | |
2420 /*================================================================== | |
2421 Remove transcripts that has too few read coverage (-d) | |
2422 ====================================================================*/ | |
2423 for ( i = 0 ; i < tcnt ; ++i ) | |
2424 { | |
2425 if ( transcripts[i].abundance >= 0 ) | |
2426 { | |
2427 int len = GetTranscriptLengthFromAbundanceAndFPKM( transcripts[i].abundance, transcripts[i].FPKM ) ; | |
2428 double cov = ( transcripts[i].abundance * alignments.readLen ) / len ; | |
2429 //printf( "%d: %d %d %lf %lf\n", i, len, transcripts[i].seVector.Count(), cov, geneMaxCov[ txptGid[i] - baseGeneId ] ) ; | |
2430 | |
2431 if ( ( tcnt > 1 || len <= 1000 || transcripts[i].seVector.Count() <= 3 ) && cov < txptMinReadDepth ) | |
2432 { | |
2433 //if ( usedGeneId == baseGeneId + 1 && /*transcripts[i].seVector.Count() > 3 | |
2434 // && len > 1000 &&*/ geneMaxCov[ txptGid[i] - baseGeneId ] == cov ) | |
2435 if ( geneMaxCov[ txptGid[i] - baseGeneId ] == cov ) | |
2436 continue ; | |
2437 | |
2438 // Test whether it has some very abundant constraints. | |
2439 /*int cnt = 0 ; | |
2440 for ( j = 0 ; j < tcCnt ; ++j ) | |
2441 { | |
2442 if ( transcripts[i].constraintsSupport[j] >= tc[j].support / 2.0 | |
2443 && tc[j].support >= 10 | |
2444 && tc[j].uniqSupport >= 0.95 * tc[j].support | |
2445 && tc[j].normAbund >= 1 ) | |
2446 { | |
2447 ++cnt ; | |
2448 } | |
2449 } | |
2450 | |
2451 if ( cnt >= 1 ) | |
2452 { | |
2453 continue ; | |
2454 }*/ | |
2455 | |
2456 // Test whether this transcript is fully covered. If so ,we can filter it. | |
2457 | |
2458 if ( geneMaxCov[ txptGid[i] - baseGeneId ] <= 5 ) | |
2459 { | |
2460 bufferTable.Reset() ; | |
2461 for ( j = 0 ; j < sccCnt ; ++j ) | |
2462 { | |
2463 if ( !IsConstraintInTranscript( transcripts[i], scc[j] ) ) | |
2464 continue ; | |
2465 bufferTable.Or( scc[j].vector ) ; | |
2466 } | |
2467 if ( bufferTable.IsEqual( transcripts[i].seVector ) ) | |
2468 transcripts[i].abundance = -transcripts[i].abundance ; | |
2469 } | |
2470 else | |
2471 transcripts[i].abundance = -transcripts[i].abundance ; | |
2472 | |
2473 /*else | |
2474 { | |
2475 transcripts[i].seVector.Print() ; | |
2476 bufferTable.Print() ; | |
2477 OutputTranscript( stderr, subexons, transcripts[i] ) ; | |
2478 }*/ | |
2479 } | |
2480 } | |
2481 } | |
2482 | |
2483 /*================================================================== | |
2484 Remove transcripts that is too short | |
2485 ====================================================================*/ | |
2486 for ( i = 0 ; i < tcnt ; ++i ) | |
2487 { | |
2488 if ( transcripts[i].abundance <= 0 ) | |
2489 continue ; | |
2490 | |
2491 int len = GetTranscriptLengthFromAbundanceAndFPKM( transcripts[i].abundance, transcripts[i].FPKM ) ; | |
2492 if ( len < 200 ) | |
2493 { | |
2494 transcripts[i].abundance = -transcripts[i].abundance ; | |
2495 } | |
2496 } | |
2497 | |
2498 // Rescue transcripts that showed up in many samples. | |
2499 /*for ( i = 0 ; i < tcnt ; ++i ) | |
2500 { | |
2501 if ( transcripts[i].abundance > 0 ) | |
2502 continue ; | |
2503 if ( txptSampleSupport[ transcripts[i].id ] >= 3 && | |
2504 txptSampleSupport[transcripts[i].id ] >= (int)( sampleCnt / 2 ) ) | |
2505 transcripts[i].abundance = -transcripts[i].abundance ; | |
2506 }*/ | |
2507 | |
2508 // Rescue some transcripts covering subexon chains showed up in many samples, but missing after filtration. | |
2509 struct _constraint tmpC ; | |
2510 tmpC.vector.Init( seCnt ) ; | |
2511 | |
2512 std::vector< struct _pair32 > missingChain ; | |
2513 std::vector<int> recoverCandidate ; | |
2514 bool *used = new bool[tcnt] ; | |
2515 memset( used, false, sizeof( bool ) * tcnt ) ; | |
2516 | |
2517 // Obtain the list of transcripts that should be recovered. | |
2518 for ( i = 0 ; i < seCnt && sampleCnt > 1 ; ++i ) | |
2519 { | |
2520 | |
2521 double maxFPKM = -1 ; | |
2522 for ( std::map<int, int>::iterator it = subexonChainSupport[i].begin() ; | |
2523 it != subexonChainSupport[i].end() ; ++it ) | |
2524 { | |
2525 if ( sampleCnt >= 0 && ( it->second < 3 || it->second < (int)( 0.5 * sampleCnt ) ) && it->second <= sampleCnt / 2 ) | |
2526 continue ; | |
2527 | |
2528 bool recover = true ; | |
2529 tmpC.vector.Reset() ; | |
2530 tmpC.vector.Set( i ) ; | |
2531 tmpC.vector.Set( it->first ) ; | |
2532 tmpC.first = i ; | |
2533 tmpC.last = it->first ; | |
2534 | |
2535 | |
2536 for ( j = 0 ; j < tcnt ; ++j ) | |
2537 { | |
2538 if ( transcripts[j].abundance < 0 ) | |
2539 continue ; | |
2540 | |
2541 if ( IsConstraintInTranscript( transcripts[j], tmpC ) ) | |
2542 { | |
2543 recover = false ; | |
2544 break ; | |
2545 } | |
2546 | |
2547 if ( recover ) | |
2548 { | |
2549 for ( j = 0 ; j < tcnt ; ++j ) | |
2550 { | |
2551 if ( transcripts[j].abundance > 0 ) | |
2552 continue ; | |
2553 //printf( "%d %lf\n", IsConstraintInTranscript( transcripts[j], tmpC ), transcripts[j].FPKM ) ; | |
2554 if ( IsConstraintInTranscript( transcripts[j], tmpC ) ) | |
2555 { | |
2556 /*if ( maxTag == -1 ) | |
2557 maxTag = j ; | |
2558 else | |
2559 { | |
2560 if ( txptSampleSupport[ transcripts[j].id ] > txptSampleSupport[ transcripts[maxTag ].id ] ) | |
2561 maxTag = j ; | |
2562 else if ( txptSampleSupport[ transcripts[j].id ] == txptSampleSupport[ transcripts[maxTag ].id ]) | |
2563 { | |
2564 if ( transcripts[j].FPKM > transcripts[maxTag].FPKM ) | |
2565 maxTag = j ; | |
2566 } | |
2567 }*/ | |
2568 | |
2569 struct _pair32 np ; | |
2570 np.a = i ; np.b = it->first ; | |
2571 missingChain.push_back( np ) ; | |
2572 | |
2573 if ( !used[j] ) | |
2574 { | |
2575 recoverCandidate.push_back( j ) ; | |
2576 used[j] = true ; | |
2577 } | |
2578 } | |
2579 } | |
2580 | |
2581 /*if ( maxTag != -1 && txptSampleSupport[ transcripts[maxTag].id ] > 1 ) | |
2582 { | |
2583 //printf( "recover %d %d\n", maxTag, txptSampleSupport[ transcripts[maxTag].id ] ) ; | |
2584 transcripts[maxTag].abundance *= -1 ; | |
2585 }*/ | |
2586 } | |
2587 } | |
2588 | |
2589 } | |
2590 } | |
2591 | |
2592 int size = recoverCandidate.size() ; | |
2593 memset( used, false, sizeof( bool ) * tcnt ) ; | |
2594 // Recover the candidates in the order of reliability | |
2595 int *geneRecoverCnt = new int[ usedGeneId - baseGeneId ] ; | |
2596 memset( geneRecoverCnt, 0, sizeof( int ) * ( usedGeneId - baseGeneId ) ) ; | |
2597 int round = 1 ; | |
2598 if ( aggressive && size > 1 ) | |
2599 round = 1 ; | |
2600 | |
2601 for ( i = 0 ; i < size ; ++i ) | |
2602 { | |
2603 int maxTag = -1 ; | |
2604 int maxCover = -1 ; | |
2605 for ( j = 0 ; j < size ; ++j ) | |
2606 { | |
2607 if ( !used[ recoverCandidate[j] ] ) | |
2608 { | |
2609 /*int cover = 0 ; | |
2610 | |
2611 k = missingChain.size() ; | |
2612 int l ; | |
2613 for ( l = 0 ; l < k ; ++l ) | |
2614 { | |
2615 if ( missingChain[l].a == -1 ) | |
2616 continue ; | |
2617 | |
2618 tmpC.vector.Reset() ; | |
2619 tmpC.vector.Set( missingChain[l].a ) ; | |
2620 tmpC.vector.Set( missingChain[l].b ) ; | |
2621 tmpC.first = missingChain[l].a ; | |
2622 tmpC.last = missingChain[l].b ; | |
2623 | |
2624 if ( IsConstraintInTranscript( transcripts[ recoverCandidate[j] ], tmpC ) ) | |
2625 { | |
2626 ++cover ; | |
2627 } | |
2628 }*/ | |
2629 | |
2630 if ( maxTag == -1 ) | |
2631 { | |
2632 maxTag = recoverCandidate[j] ; | |
2633 //maxCover = cover ; | |
2634 continue ; | |
2635 } | |
2636 | |
2637 /*if ( cover > maxCover ) | |
2638 { | |
2639 maxTag = recoverCandidate[j] ; | |
2640 maxCover = cover ; | |
2641 } | |
2642 else if ( cover == maxCover ) | |
2643 {*/ | |
2644 if ( txptSampleSupport[ transcripts[ recoverCandidate[j] ].id ] > | |
2645 txptSampleSupport[ | |
2646 transcripts[ maxTag ].id | |
2647 ] ) | |
2648 maxTag = recoverCandidate[j] ; | |
2649 else if ( txptSampleSupport[ transcripts[ recoverCandidate[j] ].id ] == | |
2650 txptSampleSupport[ transcripts[ maxTag ].id ] ) | |
2651 { | |
2652 if ( transcripts[ recoverCandidate[j] ].FPKM > transcripts[ maxTag ].FPKM ) | |
2653 maxTag = recoverCandidate[j] ; | |
2654 } | |
2655 | |
2656 /*else if ( transcripts[ recoverCandidate[j] ].FPKM > transcripts[ maxTag ].FPKM ) | |
2657 maxTag = recoverCandidate[j] ; | |
2658 else if ( transcripts[ recoverCandidate[j] ].FPKM == transcripts[ maxTag ].FPKM ) | |
2659 { | |
2660 if ( txptSampleSupport[ transcripts[ recoverCandidate[j] ].id ] > | |
2661 txptSampleSupport[ transcripts[ maxTag ].id ] ) | |
2662 maxTag = recoverCandidate[j] ; | |
2663 }*/ | |
2664 //} | |
2665 } | |
2666 } | |
2667 | |
2668 if ( maxTag == -1 || txptSampleSupport[ transcripts[ maxTag ].id ] <= 2 | |
2669 || txptSampleSupport[ transcripts[maxTag].id ] < 0.5 * sampleCnt ) | |
2670 break ; | |
2671 | |
2672 used[maxTag] = true ; | |
2673 if ( geneRecoverCnt[ txptGid[maxTag] - baseGeneId ] >= round ) | |
2674 continue ; | |
2675 ++geneRecoverCnt[ txptGid[maxTag] - baseGeneId ] ; | |
2676 | |
2677 k = missingChain.size() ; | |
2678 int cnt = 0 ; | |
2679 for ( j = 0 ; j < k ; ++j ) | |
2680 { | |
2681 if ( missingChain[j].a == -1 ) | |
2682 continue ; | |
2683 | |
2684 tmpC.vector.Reset() ; | |
2685 tmpC.vector.Set( missingChain[j].a ) ; | |
2686 tmpC.vector.Set( missingChain[j].b ) ; | |
2687 tmpC.first = missingChain[j].a ; | |
2688 tmpC.last = missingChain[j].b ; | |
2689 | |
2690 if ( IsConstraintInTranscript( transcripts[maxTag], tmpC ) ) | |
2691 { | |
2692 missingChain[j].a = -1 ; | |
2693 ++cnt ; | |
2694 } | |
2695 } | |
2696 | |
2697 int len = GetTranscriptLengthFromAbundanceAndFPKM( transcripts[maxTag].abundance, transcripts[maxTag].FPKM ) ; | |
2698 double cov = ( transcripts[maxTag].abundance * alignments.readLen ) / len ; | |
2699 if ( cnt >= 1 && cov > 1.0 ) | |
2700 { | |
2701 transcripts[maxTag].abundance *= -1 ; | |
2702 } | |
2703 } | |
2704 delete[] used ; | |
2705 delete[] geneRecoverCnt ; | |
2706 tmpC.vector.Release() ; | |
2707 | |
2708 | |
2709 tcnt = RemoveNegativeAbundTranscripts( transcripts ) ; | |
2710 | |
2711 | |
2712 | |
2713 delete []geneMaxCov ; | |
2714 bufferTable.Release() ; | |
2715 delete []geneMaxFPKM ; | |
2716 delete []geneMaxFPKMTag ; | |
2717 delete []nonOverlapMaxFPKM ; | |
2718 delete []txptGid ; | |
2719 | |
2720 /*================================================================== | |
2721 Remove transcripts that seems duplicated | |
2722 ====================================================================*/ | |
2723 for ( i = 0 ; i < tcnt ; ++i ) | |
2724 { | |
2725 int support = 0 ; | |
2726 int uniqSupport = 0 ; | |
2727 | |
2728 for ( j = 0 ; j < tcCnt ; ++j ) | |
2729 { | |
2730 if ( !IsConstraintInTranscript( transcripts[i], scc[ tc[j].i ] ) || !IsConstraintInTranscript( transcripts[i], scc[ tc[j].j ] ) ) | |
2731 continue ; | |
2732 //support += scc[ tc[j].i ].support + scc[ tc[j].j ].support ; | |
2733 //uniqSupport += scc[ tc[j].i ].uniqSupport + scc[ tc[j].j ].uniqSupport ; | |
2734 support += tc[j].support ; | |
2735 uniqSupport += tc[j].uniqSupport ; | |
2736 | |
2737 //printf( "constraint uniqness: %d: %d %d\n", i, tc[j].uniqSupport, tc[j].support ) ; | |
2738 } | |
2739 //printf( "%d: %d %d\n", i, uniqSupport, support ) ; | |
2740 if ( (double)uniqSupport < 0.03 * support ) | |
2741 transcripts[i].abundance = -1 ; | |
2742 } | |
2743 tcnt = RemoveNegativeAbundTranscripts( transcripts ) ; | |
2744 | |
2745 | |
2746 /*================================================================== | |
2747 Remove shadow transcripts, the abnormal 2-exon txpt whose intron is very close to the true one or one of the anchor exon is shorter than 25bp.... | |
2748 ====================================================================*/ | |
2749 int minusCnt = 0, plusCnt = 0 ; | |
2750 int mainStrand ; | |
2751 for ( i = 0 ; i < seCnt ; ++i ) | |
2752 { | |
2753 if ( subexons[i].rightStrand == 1 ) | |
2754 ++plusCnt ; | |
2755 else if ( subexons[i].rightStrand == -1 ) | |
2756 ++minusCnt ; | |
2757 } | |
2758 if ( plusCnt > minusCnt ) | |
2759 mainStrand = 1 ; | |
2760 else | |
2761 mainStrand = -1 ; | |
2762 | |
2763 for ( i = 0 ; i < tcnt ; ++i ) | |
2764 { | |
2765 std::vector<int> subexonIdx ; | |
2766 transcripts[i].seVector.GetOnesIndices( subexonIdx ) ; | |
2767 int size = subexonIdx.size() ; | |
2768 int intronCnt = 0 ; | |
2769 int anchorIdx = 0 ; // the subexon adjacent to the only intron. | |
2770 | |
2771 for ( j = 0 ; j < size - 1 ; ++j ) | |
2772 { | |
2773 if ( subexons[ subexonIdx[j] ].end + 1 < subexons[ subexonIdx[j + 1] ].start ) | |
2774 { | |
2775 ++intronCnt ; | |
2776 anchorIdx = j ; | |
2777 } | |
2778 } | |
2779 if ( intronCnt != 1 ) | |
2780 continue ; | |
2781 | |
2782 int anchorExonLength[2] = {0, 0}; | |
2783 int tag = 0 ; | |
2784 for ( j = 0 ; j < size ; ++j ) | |
2785 { | |
2786 anchorExonLength[tag] += subexons[ subexonIdx[j] ].end - subexons[ subexonIdx[j] ].start + 1 ; | |
2787 if ( tag == 0 && subexons[ subexonIdx[j] ].end + 1 < subexons[ subexonIdx[j + 1] ].start ) | |
2788 ++tag ; | |
2789 } | |
2790 | |
2791 int flag = 0 ; | |
2792 if ( subexons[ subexonIdx[anchorIdx] ].rightStrand == mainStrand ) | |
2793 { | |
2794 j = subexonIdx[ anchorIdx ] ; | |
2795 if ( subexons[j].end - subexons[j].start + 1 <= 20 || | |
2796 ( subexons[j+ 1].start == subexons[j].end + 1 && subexons[j + 1].end - subexons[j + 1].start + 1 <= 20 | |
2797 && subexons[j + 1].rightStrand == mainStrand ) ) | |
2798 ++flag ; | |
2799 j = subexonIdx[ anchorIdx + 1 ] ; | |
2800 if ( subexons[j].end - subexons[j].start + 1 <= 20 || | |
2801 ( subexons[j].start == subexons[j - 1].end + 1 && subexons[j - 1].end - subexons[j - 1].start + 1 <= 20 | |
2802 && subexons[j - 1].leftStrand == mainStrand ) ) | |
2803 ++flag ; | |
2804 } | |
2805 | |
2806 if ( anchorExonLength[0] <= 25 || anchorExonLength[1] <= 25 ) | |
2807 flag = 2 ; | |
2808 | |
2809 // the alignment support the intron must be unique and has enough support. | |
2810 int support = 0 ; | |
2811 int uniqSupport = 0 ; | |
2812 for ( j = 0 ; j < tcCnt ; ++j ) | |
2813 { | |
2814 if ( !IsConstraintInTranscript( transcripts[i], scc[ tc[j].i ] ) || !IsConstraintInTranscript( transcripts[i], scc[ tc[j].j ] ) ) | |
2815 continue ; | |
2816 if ( ( scc[ tc[j].i ].vector.Test( subexonIdx[ anchorIdx ] ) && scc[ tc[j].i ].vector.Test( subexonIdx[ anchorIdx + 1 ] ) ) | |
2817 || ( scc[ tc[j].j ].vector.Test( subexonIdx[ anchorIdx ] ) && scc[ tc[j].j ].vector.Test( subexonIdx[ anchorIdx + 1 ] ) ) ) | |
2818 { | |
2819 support += tc[j].support ; | |
2820 uniqSupport += tc[j].uniqSupport ; | |
2821 } | |
2822 | |
2823 } | |
2824 | |
2825 if ( (double)uniqSupport < 0.3 * support || support < txptMinReadDepth ) | |
2826 { | |
2827 flag = 2 ; | |
2828 } | |
2829 | |
2830 if ( flag == 2 ) | |
2831 transcripts[i].abundance = -1 ; | |
2832 | |
2833 } | |
2834 tcnt = RemoveNegativeAbundTranscripts( transcripts ) ; | |
2835 | |
2836 return transcripts.size() ; | |
2837 } | |
2838 | |
2839 void TranscriptDecider::ComputeTranscriptsScore( struct _subexon *subexons, int seCnt, std::map<int, int> *subexonChainSupport, std::vector<struct _transcript> &transcripts ) | |
2840 { | |
2841 int i, j ; | |
2842 int tcnt = transcripts.size() ; | |
2843 struct _constraint tmpC ; | |
2844 tmpC.vector.Init( seCnt ) ; | |
2845 | |
2846 for ( i = 0 ; i < tcnt ; ++i ) | |
2847 transcripts[i].correlationScore = 0 ; | |
2848 | |
2849 for ( i = 0 ; i < seCnt ; ++i ) | |
2850 { | |
2851 for ( std::map<int, int>::iterator it = subexonChainSupport[i].begin() ; | |
2852 it != subexonChainSupport[i].end() ; ++it ) | |
2853 { | |
2854 if ( sampleCnt >= 0 && ( it->second < 3 || it->second < (int)( 0.1 * sampleCnt ) ) && it->second <= sampleCnt / 2 ) | |
2855 continue ; | |
2856 | |
2857 tmpC.vector.Reset() ; | |
2858 tmpC.vector.Set( i ) ; | |
2859 tmpC.vector.Set( it->first ) ; | |
2860 tmpC.first = i ; | |
2861 tmpC.last = it->first ; | |
2862 | |
2863 for ( j = 0 ; j < tcnt ; ++j ) | |
2864 { | |
2865 if ( IsConstraintInTranscript( transcripts[j], tmpC ) ) | |
2866 ++transcripts[j].correlationScore ; | |
2867 } | |
2868 } | |
2869 } | |
2870 | |
2871 tmpC.vector.Release() ; | |
2872 } | |
2873 | |
2874 int TranscriptDecider::Solve( struct _subexon *subexons, int seCnt, std::vector<Constraints> &constraints, SubexonCorrelation &subexonCorrelation ) | |
2875 { | |
2876 int i, j, k ; | |
2877 int cnt = 0 ; | |
2878 int *f = new int[seCnt] ; // this is a general buffer for a type of usage. | |
2879 bool useDP = false ; | |
2880 | |
2881 compatibleTestVectorT.Init( seCnt ) ; // this is the bittable used in compatible test function. | |
2882 compatibleTestVectorC.Init( seCnt ) ; | |
2883 | |
2884 for ( i = 0 ; i < seCnt ; ++i ) | |
2885 { | |
2886 subexons[i].canBeStart = subexons[i].canBeEnd = false ; | |
2887 | |
2888 if ( subexons[i].prevCnt == 0 ) | |
2889 subexons[i].canBeStart = true ; | |
2890 else if ( subexons[i].leftClassifier < canBeSoftBoundaryThreshold && subexons[i].leftClassifier != -1 | |
2891 && subexons[i].leftStrand != 0 ) // The case of overhang. | |
2892 { | |
2893 // We then look into whether there is a left-side end already showed up before this subexon in this region of subexons. | |
2894 bool flag = true ; | |
2895 for ( j = i - 1 ; j >= 0 ; --j ) | |
2896 { | |
2897 if ( subexons[j].end + 1 != subexons[j + 1].start ) | |
2898 break ; | |
2899 if ( subexons[i].canBeStart == true ) | |
2900 { | |
2901 flag = false ; | |
2902 break ; | |
2903 } | |
2904 } | |
2905 subexons[i].canBeStart = flag ; | |
2906 } | |
2907 | |
2908 if ( subexons[i].nextCnt == 0 ) | |
2909 subexons[i].canBeEnd = true ; | |
2910 else if ( subexons[i].rightClassifier < canBeSoftBoundaryThreshold && subexons[i].rightClassifier != -1 | |
2911 && subexons[i].rightStrand != 0 ) | |
2912 { | |
2913 subexons[i].canBeEnd = true ; | |
2914 } | |
2915 // Remove other soft end already showed up in this region of subexons. | |
2916 if ( subexons[i].canBeEnd == true ) | |
2917 { | |
2918 for ( j = i - 1 ; j >= 0 ; --j ) | |
2919 { | |
2920 if ( subexons[j].end + 1 != subexons[j + 1].start ) | |
2921 break ; | |
2922 if ( subexons[j].canBeEnd == true ) | |
2923 { | |
2924 subexons[j].canBeEnd = false ; | |
2925 break ; | |
2926 } | |
2927 } | |
2928 } | |
2929 //printf( "%d: %d %lf\n", subexons[i].canBeStart, subexons[i].prevCnt, subexons[i].leftClassifier ) ; | |
2930 } | |
2931 | |
2932 // Go through the cases of mixture region to set canBeStart/End. | |
2933 // e.g: +[...]+_____+[....]-...]+____+[..)_____-[...]- | |
2934 // ^ then we need to force a start point here. | |
2935 // Do we need to associate a strand information with canBeStart, canBeEnd? | |
2936 for ( i = 0 ; i < seCnt ; ) | |
2937 { | |
2938 // [i, j) is a region. | |
2939 for ( j = i + 1 ; j < seCnt ; ++j ) | |
2940 if ( subexons[j].start > subexons[j - 1].end + 1 ) | |
2941 break ; | |
2942 if ( subexons[i].canBeStart == false ) // then subexons[i] must has a hard left boundary. | |
2943 { | |
2944 int leftStrandCnt[2] = {0, 0} ; | |
2945 for ( k = i ; k < j ; ++k ) | |
2946 { | |
2947 if ( !SubexonGraph::IsSameStrand( subexons[k].rightStrand, subexons[i].leftStrand ) ) | |
2948 break ; | |
2949 if ( subexons[k].leftStrand != 0 ) | |
2950 ++leftStrandCnt[ ( subexons[k].leftStrand + 1 ) / 2 ] ; | |
2951 } | |
2952 if ( k < j && leftStrandCnt[ ( subexons[k].rightStrand + 1 ) / 2 ] == 0 ) | |
2953 subexons[i].canBeStart = true ; | |
2954 } | |
2955 | |
2956 if ( subexons[j - 1].canBeEnd == false ) | |
2957 { | |
2958 int rightStrandCnt[2] = {0, 0} ; | |
2959 for ( k = j - 1 ; k >= i ; --k ) | |
2960 { | |
2961 if ( !SubexonGraph::IsSameStrand( subexons[k].leftStrand, subexons[j - 1].rightStrand ) ) | |
2962 break ; | |
2963 if ( subexons[k].rightStrand != 0 ) | |
2964 ++rightStrandCnt[ ( subexons[k].rightStrand + 1 ) / 2 ] ; | |
2965 } | |
2966 if ( k >= i && rightStrandCnt[ ( subexons[k].leftStrand + 1 ) / 2 ] == 0 ) | |
2967 subexons[j - 1].canBeEnd = true ; | |
2968 } | |
2969 | |
2970 //if ( subexons[i].start == 6870264) | |
2971 // printf( "hi %d %d\n",i , subexons[i].canBeStart ) ; | |
2972 i = j ; | |
2973 } | |
2974 /*for ( i = 0 ; i < seCnt ; ++i ) | |
2975 { | |
2976 printf( "%d %d: %d %d\n", subexons[i].start, subexons[i].end, subexons[i].canBeStart, subexons[i].canBeEnd ) ; | |
2977 }*/ | |
2978 | |
2979 // Find the gene ids. | |
2980 baseGeneId = subexons[0].lcCnt ; | |
2981 usedGeneId = subexons[0].rcCnt ; | |
2982 defaultGeneId[0] = defaultGeneId[1] = -1 ; | |
2983 for ( i = 0 ; i < seCnt ; ++i ) | |
2984 { | |
2985 if ( subexons[i].geneId < 0 ) | |
2986 continue ; | |
2987 | |
2988 //if ( baseGeneId == -1 || subexons[i].geneId < baseGeneId ) | |
2989 // baseGeneId = subexons[i].geneId ; | |
2990 //if ( subexons[i].geneId > usedGeneId ) | |
2991 // usedGeneId = subexons[i].geneId ; | |
2992 | |
2993 if ( ( subexons[i].rightStrand == -1 || subexons[i].leftStrand == -1 ) && | |
2994 ( defaultGeneId[0] == -1 || subexons[i].geneId < defaultGeneId[0] ) ) | |
2995 defaultGeneId[0] = subexons[i].geneId ; | |
2996 if ( ( subexons[i].rightStrand == 1 || subexons[i].leftStrand == 1 ) && | |
2997 ( defaultGeneId[1] == -1 || subexons[i].geneId < defaultGeneId[1] ) ) | |
2998 defaultGeneId[1] = subexons[i].geneId ; | |
2999 } | |
3000 if ( defaultGeneId[0] == -1 ) | |
3001 defaultGeneId[0] = baseGeneId ; | |
3002 if ( defaultGeneId[1] == -1 ) | |
3003 defaultGeneId[1] = usedGeneId - 1 ; | |
3004 | |
3005 // Go through the constraints to find the chain of subexons that should be kept. | |
3006 std::map<int, int> *subexonChainSupport = new std::map<int, int>[ seCnt ] ; | |
3007 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3008 { | |
3009 std::vector<int> subexonIdx ; | |
3010 std::vector<struct _pair32> chain ; | |
3011 | |
3012 int tcCnt = constraints[i].constraints.size() ; | |
3013 int size ; | |
3014 for ( j = 0 ; j < tcCnt ; ++j ) | |
3015 { | |
3016 struct _constraint c = constraints[i].constraints[j] ; | |
3017 if ( c.uniqSupport < 0.95 * c.support || c.support < 3 ) | |
3018 continue ; | |
3019 | |
3020 subexonIdx.clear() ; | |
3021 c.vector.GetOnesIndices( subexonIdx ) ; | |
3022 size = subexonIdx.size() ; | |
3023 | |
3024 for ( k = 0 ; k < size - 1 ; ++k ) | |
3025 { | |
3026 struct _pair32 p ; | |
3027 | |
3028 p.a = subexonIdx[k] ; | |
3029 p.b = subexonIdx[k + 1] ; | |
3030 //if ( subexons[p.a].end + 1 == 113235898 && subexons[ p.b ].start + 1 == 113236121 ) | |
3031 // printf( "bad bad %d %d %d\n", i, c.uniqSupport, c.support ) ; | |
3032 | |
3033 if ( subexons[ p.a ].end + 1 < subexons[ p.b ].start ) | |
3034 chain.push_back( p ) ; | |
3035 } | |
3036 } | |
3037 // Remove redundancy. | |
3038 sort( chain.begin(), chain.end(), CompSortPairs ) ; | |
3039 size = chain.size() ; | |
3040 k = 0 ; | |
3041 for ( j = 1 ; j < size ; ++j ) | |
3042 { | |
3043 if ( chain[j].a == chain[k].a && chain[j].b == chain[k].b ) | |
3044 continue ; | |
3045 else | |
3046 { | |
3047 ++k ; | |
3048 chain[k] = chain[j] ; | |
3049 } | |
3050 } | |
3051 chain.resize( k + 1 ) ; | |
3052 | |
3053 // Add those to sample count | |
3054 size = k + 1 ; | |
3055 for ( j = 0 ; j < size ; ++j ) | |
3056 { | |
3057 if ( subexonChainSupport[ chain[j].a ].count( chain[j].b ) ) | |
3058 { | |
3059 ++subexonChainSupport[ chain[j].a ][ chain[j].b ] ; | |
3060 } | |
3061 else | |
3062 subexonChainSupport[ chain[j].a ][ chain[j].b ] = 1 ; | |
3063 } | |
3064 } | |
3065 | |
3066 /*for ( i = 0 ; i < seCnt ; ++i ) | |
3067 { | |
3068 printf( "%d:", i ) ; | |
3069 for ( std::map<int, int>::iterator it = subexonChainSupport[i].begin() ; it != subexonChainSupport[i].end() ; ++it ) | |
3070 printf( " (%d %d) ", it->first, it->second ) ; | |
3071 printf( "\n" ) ; | |
3072 }*/ | |
3073 | |
3074 //printf( "%d %d %d\n", defaultGeneId[0], baseGeneId, usedGeneId ) ; | |
3075 cnt = 0 ; | |
3076 memset( f, -1, sizeof( int ) * seCnt ) ; | |
3077 for ( i = 0 ; i < seCnt ; ++i ) | |
3078 { | |
3079 if ( subexons[i].canBeStart ) | |
3080 { | |
3081 cnt += SubTranscriptCount( i, subexons, f ) ; | |
3082 } | |
3083 } | |
3084 if ( cnt <= USE_DP ) | |
3085 { | |
3086 for ( i = 0 ; i < seCnt ; ++i ) | |
3087 if ( f[i] > USE_DP ) | |
3088 { | |
3089 useDP = true ; | |
3090 break ; | |
3091 } | |
3092 } | |
3093 else | |
3094 useDP = true ; | |
3095 if ( !useDP ) | |
3096 { | |
3097 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3098 { | |
3099 double msize = constraints[i].matePairs.size() ; | |
3100 double csize = constraints[i].constraints.size() ; | |
3101 if ( cnt > ( csize / msize ) * ( csize / msize ) * seCnt | |
3102 && cnt > USE_DP / ( msize * msize ) && cnt > 50 ) | |
3103 { | |
3104 useDP = true ; | |
3105 break ; | |
3106 } | |
3107 } | |
3108 } | |
3109 | |
3110 int atCnt = cnt ; | |
3111 printf( "%d: atCnt=%d seCnt=%d %d %d %d\n", subexons[0].start + 1, atCnt, seCnt, useDP, (int)constraints[0].constraints.size(), (int)constraints[0].matePairs.size() ) ; | |
3112 fflush( stdout ) ; | |
3113 std::vector<struct _transcript> alltranscripts ; | |
3114 | |
3115 if ( !useDP ) | |
3116 { | |
3117 int origSize = atCnt ; | |
3118 alltranscripts.resize( atCnt ) ; | |
3119 for ( i = 0 ; i < atCnt ; ++i ) | |
3120 { | |
3121 alltranscripts[i].seVector.Init( seCnt ) ; | |
3122 alltranscripts[i].correlationScore = 1 ; | |
3123 } | |
3124 | |
3125 atCnt = 0 ; | |
3126 for ( i = 0 ; i < seCnt ; ++i ) | |
3127 { | |
3128 if ( subexons[i].canBeStart ) | |
3129 EnumerateTranscript( i, 0, f, 0, subexons, subexonCorrelation, 1, alltranscripts, atCnt ) ; | |
3130 } | |
3131 | |
3132 for ( i = atCnt ; i < origSize ; ++i ) | |
3133 alltranscripts[i].seVector.Release() ; | |
3134 | |
3135 alltranscripts.resize( atCnt ) ; | |
3136 //printf( "transcript cnt: %d\n", atCnt ) ; | |
3137 //printf( "%d %d\n", alltranscripts[0].seVector.Test( 1 ), constraints[0].matePairs.size() ) ; | |
3138 } | |
3139 else // Use dynamic programming to pick a set of candidate transcript. | |
3140 { | |
3141 std::vector<struct _transcript> sampleTranscripts ; | |
3142 | |
3143 // pre allocate the memory. | |
3144 struct _dpAttribute attr ; | |
3145 attr.f1 = new struct _dp[seCnt] ; | |
3146 if ( seCnt <= 10000 ) | |
3147 { | |
3148 attr.f2 = new struct _dp*[seCnt] ; | |
3149 for ( i = 0 ; i < seCnt ; ++i ) | |
3150 attr.f2[i] = new struct _dp[seCnt] ; | |
3151 } | |
3152 else | |
3153 attr.f2 = NULL ; | |
3154 | |
3155 hashMax = HASH_MAX ; | |
3156 if (seCnt > 500) | |
3157 hashMax = 1000003 ; | |
3158 else if (seCnt > 1000) | |
3159 hashMax = 10000019 ; | |
3160 else if (seCnt > 1500) | |
3161 hashMax = 20000003 ; | |
3162 | |
3163 attr.hash = dpHash ; | |
3164 if ( hashMax != HASH_MAX ) | |
3165 attr.hash = new struct _dp[hashMax] ; | |
3166 | |
3167 for ( i = 0 ; i < seCnt ; ++i ) | |
3168 { | |
3169 attr.f1[i].seVector.Nullify() ; | |
3170 attr.f1[i].seVector.Init( seCnt ) ; | |
3171 for ( j = i ; j < seCnt ; ++j ) | |
3172 { | |
3173 attr.f2[i][j].seVector.Nullify() ; | |
3174 attr.f2[i][j].seVector.Init( seCnt ) ; | |
3175 } | |
3176 } | |
3177 for ( i = 0 ; i < hashMax ; ++i ) | |
3178 { | |
3179 attr.hash[i].seVector.Nullify() ; | |
3180 attr.hash[i].seVector.Init( seCnt ) ; | |
3181 } | |
3182 | |
3183 // select candidate transcripts from each sample. | |
3184 struct _pair32 *sampleComplexity = new struct _pair32[ sampleCnt ] ; | |
3185 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3186 { | |
3187 sampleComplexity[i].a = i ; | |
3188 sampleComplexity[i].b = constraints[i].constraints.size() ; | |
3189 } | |
3190 qsort( sampleComplexity, sampleCnt, sizeof( sampleComplexity[0] ), CompPairsByB ) ; | |
3191 int downsampleCnt = -1 ; | |
3192 | |
3193 for ( i = sampleCnt - 1 ; i >= 0 ; --i ) | |
3194 { | |
3195 sampleTranscripts.clear() ; | |
3196 int iterBound = constraints[ sampleComplexity[i].a ].constraints.size() ; | |
3197 if ( i < sampleCnt - 1 ) | |
3198 iterBound = 100 ; | |
3199 | |
3200 if ( i < sampleCnt - 10 && alltranscripts.size() > 1000 ) | |
3201 iterBound = 10 ; | |
3202 //printf( "%d %d: %d %d %d %d\n", subexons[0].start + 1, sampleComplexity[i].a, constraints[ sampleComplexity[i].a ].constraints.size(), constraints[ sampleComplexity[i].a ].matePairs.size(), | |
3203 // alltranscripts.size(), iterBound ) ; fflush( stdout ) ; | |
3204 if ( maxDpConstraintSize > 0 ) | |
3205 { | |
3206 Constraints truncatedConstraints ; | |
3207 truncatedConstraints.TruncateConstraintsCoverFrom( constraints[ sampleComplexity[i].a ], seCnt, maxDpConstraintSize ) ; | |
3208 PickTranscriptsByDP( subexons, seCnt, iterBound, truncatedConstraints, | |
3209 subexonCorrelation, attr, sampleTranscripts ) ; | |
3210 } | |
3211 else if ( ( constraints[ sampleComplexity[i].a ].constraints.size() > 1000 | |
3212 && constraints[ sampleComplexity[i].a ].constraints.size() * 10 < constraints[ sampleComplexity[i].a ].matePairs.size() ) | |
3213 || ( downsampleCnt > 0 && (int)constraints[ sampleComplexity[i].a ].constraints.size() >= downsampleCnt ) | |
3214 || seCnt >= 1500 ) | |
3215 { | |
3216 Constraints downsampledConstraints ; | |
3217 int stride = (int)constraints[ sampleComplexity[i].a ].matePairs.size() / (int)constraints[ sampleComplexity[i].a ].constraints.size() ; | |
3218 if ( downsampleCnt > 0 ) | |
3219 stride = (int)constraints[ sampleComplexity[i].a ].constraints.size() / downsampleCnt ; | |
3220 if ( stride < 1 ) | |
3221 stride = 1 ; | |
3222 downsampledConstraints.DownsampleConstraintsFrom( constraints[ sampleComplexity[i].a ], stride ) ; | |
3223 if ( downsampleCnt <= 0 ) | |
3224 downsampleCnt = downsampledConstraints.constraints.size() ; | |
3225 if ( iterBound <= 10 ) | |
3226 continue ; | |
3227 PickTranscriptsByDP( subexons, seCnt, iterBound, downsampledConstraints, subexonCorrelation, attr, sampleTranscripts ) ; | |
3228 } | |
3229 else | |
3230 { | |
3231 PickTranscriptsByDP( subexons, seCnt, iterBound, constraints[ sampleComplexity[i].a ], subexonCorrelation, attr, sampleTranscripts ) ; | |
3232 } | |
3233 int size = sampleTranscripts.size() ; | |
3234 for ( j = 0 ; j < size ; ++j ) | |
3235 alltranscripts.push_back( sampleTranscripts[j] ) ; | |
3236 | |
3237 // we can further pick a smaller subsets of transcripts here if the number is still to big. | |
3238 CoalesceSameTranscripts( alltranscripts ) ; | |
3239 | |
3240 AugmentTranscripts( subexons, alltranscripts, 1000, false ) ; | |
3241 } | |
3242 | |
3243 // release the memory. | |
3244 delete[] sampleComplexity ; | |
3245 for ( i = 0 ; i < seCnt ; ++i ) | |
3246 { | |
3247 attr.f1[i].seVector.Release() ; | |
3248 for ( j = i ; j < seCnt && attr.f2 ; ++j ) | |
3249 attr.f2[i][j].seVector.Release() ; | |
3250 } | |
3251 for ( i = 0 ; i < hashMax ; ++i ) | |
3252 attr.hash[i].seVector.Release() ; | |
3253 | |
3254 delete[] attr.f1 ; | |
3255 for ( i = 0 ; i < seCnt && attr.f2 ; ++i ) | |
3256 delete[] attr.f2[i] ; | |
3257 delete[] attr.f2 ; | |
3258 if (hashMax != HASH_MAX) | |
3259 delete[] attr.hash ; | |
3260 | |
3261 } | |
3262 | |
3263 transcriptId = new int[usedGeneId - baseGeneId] ; | |
3264 std::vector<struct _transcript> *predTranscripts = new std::vector<struct _transcript>[sampleCnt] ; | |
3265 | |
3266 atCnt = alltranscripts.size() ; | |
3267 for ( i = 0 ; i < atCnt ; ++i ) | |
3268 alltranscripts[i].FPKM = 0 ; | |
3269 | |
3270 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3271 { | |
3272 int size = alltranscripts.size() ; | |
3273 for ( j = 0 ; j < size ; ++j ) | |
3274 alltranscripts[j].abundance = -1 ; | |
3275 //printf( "pick: %d: %d %d\n", i, constraints[i].matePairs.size(), alltranscripts.size() ) ; | |
3276 PickTranscripts( subexons, alltranscripts, constraints[i], subexonCorrelation, predTranscripts[i] ) ; | |
3277 | |
3278 /*double tmp = FPKMFraction ; | |
3279 FPKMFraction = 0 ; | |
3280 size = predTranscripts.size() ; | |
3281 for ( j = 0 ; j < size ; ++j ) | |
3282 { | |
3283 ConvertTranscriptAbundanceToFPKM( subexons, predTranscripts[j] ) ; | |
3284 } | |
3285 RefineTranscripts( subexons, seCnt, predTranscripts, constraints[i] ) ; | |
3286 FPKMFraction = tmp ;*/ | |
3287 | |
3288 } | |
3289 | |
3290 atCnt = alltranscripts.size() ; | |
3291 int *txptSampleSupport = new int[atCnt] ; | |
3292 memset( txptSampleSupport, 0, sizeof( int ) * atCnt ) ; | |
3293 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3294 { | |
3295 int size = predTranscripts[i].size() ; | |
3296 for ( j = 0 ; j < size ; ++j ) | |
3297 { | |
3298 ++txptSampleSupport[ predTranscripts[i][j].id ] ; | |
3299 ++alltranscripts[ predTranscripts[i][j].id ].FPKM ; | |
3300 } | |
3301 } | |
3302 | |
3303 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3304 { | |
3305 int size = alltranscripts.size() ; | |
3306 for ( j = 0 ; j < size ; ++j ) | |
3307 alltranscripts[j].abundance = -1 ; | |
3308 //printf( "pick: %d: %d %d\n", i, constraints[i].matePairs.size(), alltranscripts.size() ) ; | |
3309 | |
3310 size = predTranscripts[i].size() ; | |
3311 for ( j = 0 ; j < size ; ++j ) | |
3312 { | |
3313 predTranscripts[i][j].seVector.Release() ; | |
3314 } | |
3315 predTranscripts[i].clear() ; | |
3316 PickTranscripts( subexons, alltranscripts, constraints[i], subexonCorrelation, predTranscripts[i] ) ; | |
3317 } | |
3318 | |
3319 std::vector<int> *rawPredTranscriptIds = new std::vector<int>[sampleCnt] ; | |
3320 std::vector<double> *rawPredTranscriptAbundance = new std::vector<double>[sampleCnt] ; | |
3321 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3322 { | |
3323 int size = predTranscripts[i].size() ; | |
3324 | |
3325 for ( j = 0 ; j < size ; ++j ) | |
3326 { | |
3327 rawPredTranscriptIds[i].push_back( predTranscripts[i][j].id ) ; | |
3328 rawPredTranscriptAbundance[i].push_back( predTranscripts[i][j].abundance ) ; | |
3329 } | |
3330 } | |
3331 | |
3332 // Do the filtration. | |
3333 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3334 { | |
3335 int size = predTranscripts[i].size() ; | |
3336 for ( j = 0 ; j < size ; ++j ) | |
3337 { | |
3338 ConvertTranscriptAbundanceToFPKM( subexons, predTranscripts[i][j] ) ; | |
3339 } | |
3340 size = RefineTranscripts( subexons, seCnt, false, subexonChainSupport, txptSampleSupport, predTranscripts[i], constraints[i] ) ; | |
3341 | |
3342 // Recompute the abundance. | |
3343 AbundanceEstimation( subexons, seCnt, constraints[i], predTranscripts[i] ) ; | |
3344 for ( j = 0 ; j < size ; ++j ) | |
3345 ConvertTranscriptAbundanceToFPKM( subexons, predTranscripts[i][j] ) ; | |
3346 size = RefineTranscripts( subexons, seCnt, true, subexonChainSupport, txptSampleSupport, predTranscripts[i], constraints[i] ) ; | |
3347 | |
3348 //ComputeTranscriptsScore( subexons, seCnt, subexonChainSupport, predTranscripts[i] ) ; | |
3349 } | |
3350 | |
3351 // Rescue some filtered transcripts | |
3352 memset( txptSampleSupport, 0, sizeof( int ) * atCnt ) ; | |
3353 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3354 { | |
3355 int size = predTranscripts[i].size() ; | |
3356 for ( j = 0 ; j < size ; ++j ) | |
3357 { | |
3358 ++txptSampleSupport[ predTranscripts[i][j].id ] ; | |
3359 } | |
3360 } | |
3361 | |
3362 bool *predicted = new bool[atCnt] ; | |
3363 for ( i = 0 ; i < sampleCnt ; ++i ) | |
3364 { | |
3365 memset( predicted, false, sizeof( bool ) * atCnt ) ; | |
3366 if ( predTranscripts[i].size() != rawPredTranscriptIds[i].size() ) | |
3367 { | |
3368 int psize = predTranscripts[i].size() ; | |
3369 int rsize = rawPredTranscriptIds[i].size() ; | |
3370 int tcCnt = constraints[i].matePairs.size() ; | |
3371 | |
3372 for ( j = 0 ; j < psize ; ++j ) | |
3373 predicted[ predTranscripts[i][j].id ] = true ; | |
3374 | |
3375 for ( j = 0 ; j < rsize ; ++j ) | |
3376 { | |
3377 int id = rawPredTranscriptIds[i][j] ; | |
3378 if ( predicted[ id ] == false && | |
3379 ( txptSampleSupport[ id ] >= 3 && txptSampleSupport[id] >= 0.25 * sampleCnt ) ) | |
3380 { | |
3381 struct _transcript nt = alltranscripts[id] ; | |
3382 nt.seVector.Nullify() ; | |
3383 nt.seVector.Duplicate( alltranscripts[id].seVector ) ; | |
3384 nt.constraintsSupport = NULL ; | |
3385 nt.correlationScore = -1 ; | |
3386 nt.abundance = rawPredTranscriptAbundance[i][j] ; | |
3387 nt.id = id ; | |
3388 predTranscripts[i].push_back( nt ) ; | |
3389 } | |
3390 } | |
3391 if ( psize != predTranscripts[i].size() ) | |
3392 AbundanceEstimation( subexons, seCnt, constraints[i], predTranscripts[i] ) ; | |
3393 } | |
3394 | |
3395 int size = predTranscripts[i].size() ; | |
3396 | |
3397 if ( 0 ) //size == 1 ) | |
3398 { | |
3399 //AugmentTranscripts( subexons, predTranscripts[i], false ) ; | |
3400 | |
3401 int l = predTranscripts[i].size() ; | |
3402 int tcCnt = constraints[i].matePairs.size() ; | |
3403 for ( j = 0 ; j < l ; ++j ) | |
3404 { | |
3405 predTranscripts[i][j].abundance = 1.0 / alignments.readLen ; | |
3406 } | |
3407 AbundanceEstimation( subexons, seCnt, constraints[i], predTranscripts[i] ) ; | |
3408 | |
3409 std::vector<int> subexonIdx ; | |
3410 for ( j = 0 ; j < l ; ++j ) | |
3411 { | |
3412 subexonIdx.clear() ; | |
3413 predTranscripts[i][j].seVector.GetOnesIndices( subexonIdx ) ; | |
3414 int subexonIdxCnt = subexonIdx.size() ; | |
3415 int len = 0 ; | |
3416 for ( k = 0 ; k < subexonIdxCnt ; ++k ) | |
3417 len += subexons[ subexonIdx[k] ].end - subexons[ subexonIdx[k] ].start + 1 ; | |
3418 | |
3419 if ( predTranscripts[i][j].abundance * alignments.readLen / len < 2.0 ) | |
3420 predTranscripts[i][j].abundance = -1 ; | |
3421 else | |
3422 ConvertTranscriptAbundanceToFPKM( subexons, predTranscripts[i][j] ) ; | |
3423 | |
3424 } | |
3425 RemoveNegativeAbundTranscripts( predTranscripts[i] ) ; | |
3426 } | |
3427 | |
3428 // Output | |
3429 size = predTranscripts[i].size() ; | |
3430 InitTranscriptId() ; | |
3431 for ( j = 0 ; j < size ; ++j ) | |
3432 { | |
3433 OutputTranscript( i, subexons, predTranscripts[i][j] ) ; | |
3434 } | |
3435 for ( j = 0 ; j < size ; ++j ) | |
3436 { | |
3437 predTranscripts[i][j].seVector.Release() ; | |
3438 } | |
3439 } | |
3440 | |
3441 delete []predicted ; | |
3442 delete []transcriptId ; | |
3443 delete []predTranscripts ; | |
3444 delete []rawPredTranscriptIds ; | |
3445 delete []rawPredTranscriptAbundance ; | |
3446 delete []txptSampleSupport ; | |
3447 | |
3448 atCnt = alltranscripts.size() ; | |
3449 for ( i = 0 ; i < atCnt ; ++i ) | |
3450 alltranscripts[i].seVector.Release() ; | |
3451 compatibleTestVectorT.Release() ; | |
3452 compatibleTestVectorC.Release() ; | |
3453 delete[] f ; | |
3454 delete[] subexonChainSupport ; | |
3455 return 0 ; | |
3456 } | |
3457 | |
3458 void *TranscriptDeciderSolve_Wrapper( void *a ) | |
3459 { | |
3460 int i ; | |
3461 | |
3462 struct _transcriptDeciderThreadArg &arg = *( (struct _transcriptDeciderThreadArg *)a ) ; | |
3463 TranscriptDecider transcriptDecider( arg.FPKMFraction, arg.classifierThreshold, arg.txptMinReadDepth, arg.sampleCnt, *( arg.alignments ) ) ; | |
3464 transcriptDecider.SetNumThreads( arg.numThreads + 1 ) ; | |
3465 transcriptDecider.SetMultiThreadOutputHandler( arg.outputHandler ) ; | |
3466 transcriptDecider.SetMaxDpConstraintSize( arg.maxDpConstraintSize ) ; | |
3467 transcriptDecider.Solve( arg.subexons, arg.seCnt, arg.constraints, arg.subexonCorrelation ) ; | |
3468 | |
3469 int start = arg.subexons[0].start ; | |
3470 int end = arg.subexons[ arg.seCnt - 1 ].end ; | |
3471 int chrId = arg.subexons[0].chrId ; | |
3472 // Release memory | |
3473 for ( i = 0 ; i < arg.seCnt ; ++i ) | |
3474 { | |
3475 delete[] arg.subexons[i].prev ; | |
3476 delete[] arg.subexons[i].next ; | |
3477 } | |
3478 delete[] arg.subexons ; | |
3479 | |
3480 // Put the work id back to the free threads queue. | |
3481 pthread_mutex_lock( arg.ftLock ) ; | |
3482 arg.freeThreads[ *( arg.ftCnt ) ] = arg.tid ; | |
3483 ++*( arg.ftCnt ) ; | |
3484 if ( *( arg.ftCnt ) == 1 ) | |
3485 pthread_cond_signal( arg.fullWorkCond ) ; | |
3486 pthread_mutex_unlock( arg.ftLock) ; | |
3487 printf( "Thread %d: %s %d %d finished.\n", arg.tid, arg.alignments->GetChromName(chrId), start + 1, end + 1 ) ; | |
3488 fflush( stdout ) ; | |
3489 | |
3490 | |
3491 pthread_exit( NULL ) ; | |
3492 } |