diff PsiCLASS-1.0.2/SubexonInfo.cpp @ 0:903fc43d6227 draft default tip

Uploaded
author lsong10
date Fri, 26 Mar 2021 16:52:45 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/PsiCLASS-1.0.2/SubexonInfo.cpp	Fri Mar 26 16:52:45 2021 +0000
@@ -0,0 +1,1214 @@
+// report the total depth for the segment
+// Format: ./a.out alignments.bam splice_site
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+
+#define __STDC_FORMAT_MACROS
+#include <inttypes.h>
+
+#include <algorithm>
+#include <vector>
+#include <math.h>
+
+#include "alignments.hpp"
+#include "blocks.hpp"
+#include "stats.hpp"
+
+#define ABS(x) ((x)<0?-(x):(x))
+
+char usage[] = "./subexon-info alignment.bam intron.splice [options]\n"
+		"options:\n"
+		"\t--minDepth INT: the minimum coverage depth considered as part of a subexon (default: 2)\n"
+		"\t--noStats: do not compute the statistical scores (default: not used)\n" ;
+char buffer[4096] ;
+
+int gMinDepth ;
+
+bool CompSplitSite( struct _splitSite a, struct _splitSite b )
+{
+	if ( a.chrId < b.chrId )
+		return true ;
+	else if ( a.chrId > b.chrId )
+		return false ;
+	else if ( a.pos != b.pos )
+		return a.pos < b.pos ;
+	else if ( a.type != b.type )
+		return a.type < b.type ; // We want the start of exons comes first, since we are scanning the genome from left to right,
+					 // so we can terminate the extension early and create a single-base subexon later.
+	else
+		return a.oppositePos < b.oppositePos ;
+}
+
+bool CompBlocksByAvgDepth( struct _block a, struct _block b )
+{
+	double avgA = a.depthSum / (double)( a.end - a.start + 1 ) ;
+	double avgB = b.depthSum / (double)( b.end - b.start + 1 ) ;
+	return avgA < avgB ;
+}
+
+bool CompBlocksByRatio( struct _block a, struct _block b )
+{
+	return a.ratio < b.ratio ;	
+}
+
+int CompDouble( const void *p1, const void *p2 )
+{
+	double a = *(double *)p1 ;
+	double b = *(double *)p2 ;
+	if ( a > b )
+		return 1 ;
+	else if ( a < b )
+		return -1 ;
+	else
+		return 0 ;
+}
+
+// Clean up the split sites;
+void FilterAndSortSplitSites( std::vector<struct _splitSite> &sites )
+{
+	std::sort( sites.begin(), sites.end(), CompSplitSite ) ;	
+	int i, j, k, l ;
+	int size = sites.size() ;
+
+	for ( i = 0 ; i < size ; )
+	{
+		for ( j = i + 1 ; j < size ; ++j )
+			if ( sites[j].chrId != sites[i].chrId || sites[j].pos != sites[i].pos || sites[j].type != sites[i].type )
+				break ;
+		int maxSupport = 0 ;
+		for ( k = i ; k < j ; ++k )
+			if ( sites[k].support > maxSupport )
+				maxSupport = sites[k].support ;
+		
+		int strandCnt[2] = {0, 0} ;
+		char strand = sites[i].strand ;
+		for ( k = i ; k < j ; ++k )
+		{
+			if ( sites[k].strand == '-' )
+				strandCnt[0] += sites[k].support ; 
+			else if ( sites[k].strand == '+' )
+				strandCnt[1] += sites[k].support ;
+			
+		}
+		if ( strandCnt[0] > strandCnt[1] )
+			strand = '-' ;
+		else if ( strandCnt[1] > strandCnt[0] )
+			strand = '+' ;
+
+		bool allOneExceptMax = false ;
+		if ( maxSupport >= 20 )
+		{
+			allOneExceptMax = true ;
+			for ( k = i ; k < j ; ++k )	
+			{
+				if ( sites[k].support == maxSupport )	
+					continue ;
+				if ( sites[k].support > 1 )
+				{
+					allOneExceptMax = false ;
+					break ;
+				}
+			}
+		}
+		
+		for ( k = i ; k < j ; ++k )
+		{
+			if ( ( sites[k].support < 0.01 * maxSupport && sites[k].support <= 3 ) 
+				|| sites[k].support < 0.001 * maxSupport || sites[k].strand != strand // The introns from the different strand are filtered.
+				|| ( sites[k].support < 0.02 * maxSupport && sites[k].mismatchSum >= 2 * sites[k].support )
+				|| ( allOneExceptMax && sites[k].support == 1 ) 
+				|| ( sites[k].support <= 2 && sites[k].mismatchSum >= 2 * sites[k].support )
+				|| ( maxSupport >= 2 && sites[k].support == 1 && ( ABS( sites[k].oppositePos - sites[k].pos - 1 ) >= 10000 || sites[k].mismatchSum != 0 ) ) ) 
+			{
+				for ( l = i - 1 ; l >= 0 && sites[l].chrId == sites[i].chrId && sites[l].pos >= sites[k].oppositePos ; --l )
+				{
+					if ( sites[l].pos == sites[k].oppositePos && sites[l].oppositePos == sites[k].pos )
+					{
+						sites[l].support = -1 ;
+						sites[k].support = -1 ;
+						break ;
+					}
+				}
+
+				for ( l = j ; l < size && sites[l].chrId == sites[i].chrId && sites[l].pos <= sites[k].oppositePos ; ++l )
+				{
+					if ( sites[l].pos == sites[k].oppositePos && sites[l].oppositePos == sites[k].pos )
+					{
+						sites[l].support = -1 ;
+						sites[k].support = -1 ;
+						break ;
+					}
+				}
+			}
+			/*else if ( sites[k].support <= 1 && sites[k].oppositePos - sites[k].pos + 1 >= 30000 )
+			{
+				for ( l = j ; l < size && sites[l].chrId == sites[i].chrId && sites[l].pos <= sites[k].oppositePos ; ++l )
+				{
+					if ( sites[l].pos == sites[k].oppositePos && sites[l].oppositePos == sites[k].pos )
+					{
+						if ( l - j >= 20 )
+						{
+							sites[l].support = -1 ;
+							sites[k].support = -1 ;
+							break ;
+						}
+					}
+				}
+				
+			}*/
+		}
+		i = j ;
+	}
+
+	k = 0 ;
+	for ( i = 0 ; i < size ; ++i )
+	{
+		if ( sites[i].support > 0 )
+		{
+			sites[k] = sites[i] ;
+			if ( sites[k].strand == '?' )
+				sites[k].strand = '.' ;
+			++k ;
+		}
+	}
+	sites.resize( k ) ;
+}
+
+// Remove the same sites.
+void KeepUniqSplitSites( std::vector< struct _splitSite> &sites )
+{
+	int i, j ;
+	int size = sites.size() ;
+	int k = 0 ;
+	for ( i = 0 ; i < size ; )
+	{
+		for ( j = i + 1 ; j < size ; ++j )
+			if ( sites[j].chrId != sites[i].chrId || sites[j].pos != sites[i].pos || sites[j].type != sites[i].type )
+				break ;
+		sites[k] = sites[i] ;
+		++k ;
+		/*else
+		{
+			if ( sites[i].type != sites[k-1].type )
+			{
+				printf( "%d\n", sites[i].pos ) ;
+			}
+		}*/
+		i = j ;
+	}
+	sites.resize( k ) ;
+
+	// For the sites that corresponds to the start of an exon, we remove the adjust to it and 
+	/*for ( i = 1 ; i < size ; ++i )
+	{
+		if ( sites[i].pos == sites[i - 1].pos && sites[i - 1].type == 2 )
+		{
+			if ( sites[i].type == 1 )	
+				++sites[i].pos ;
+		}
+	}*/
+}
+
+// Filter split sites that are extremely close to each other but on different strand.
+void FilterNearSplitSites( std::vector< struct _splitSite> &sites )
+{
+	int i, j ;
+	int size = sites.size() ;
+	int k = 0 ; 
+	for ( i = 0 ; i < size - 1 ; ++i )
+	{
+		if ( sites[i].support < 0 || sites[i].type != sites[i + 1].type || sites[i].chrId != sites[i + 1].chrId )	
+			continue ;
+		if ( sites[i + 1].pos - sites[i].pos <= 7 && 
+			( sites[i + 1].strand != sites[i].strand || 
+				sites[i].strand == '?' ) ) 	
+		{
+			int tag = i ;
+			if ( sites[i + 1].support < sites[i].support )
+				tag = i + 1 ;
+			sites[tag].support = -1 ;
+			int direction ;
+			if ( sites[tag].oppositePos < sites[tag].pos )
+				direction = -1 ;
+			else
+				direction = 1 ;
+
+			for ( j = tag ; j >= 0 && j < size ; j += direction )
+				if ( sites[j].pos == sites[tag].oppositePos && sites[j].oppositePos == sites[tag].pos )
+				{
+					sites[j].support = -1 ;
+					break ;
+				}
+		}
+	}
+
+	for ( i = 0 ; i < size ; ++i )
+	{
+		if ( sites[i].support > 0 )
+		{
+			sites[k] = sites[i] ;
+			++k ;
+		}
+	}
+	sites.resize( k ) ;
+}
+
+void FilterRepeatSplitSites( std::vector<struct _splitSite> &sites )
+{
+	int i, j ;
+	int size = sites.size() ;
+	int k = 0 ;
+	for ( i = 0 ; i < size ; )
+	{
+		for ( j = i + 1 ; j < size ; ++j )
+		{
+			if ( sites[j].pos != sites[i].pos || sites[j].type != sites[i].type || sites[i].chrId != sites[j].chrId )
+				break ;	
+		}
+		int max = -1 ;
+		int maxtag = 0 ; 
+		for ( k = i ; k < j ; ++k )
+		{
+			if ( sites[k].uniqSupport > max )
+			{
+				max = sites[k].uniqSupport ;
+				maxtag = k ;
+			}
+			else if ( sites[k].uniqSupport == max && sites[k].support > sites[maxtag].support )
+			{
+				maxtag = k ;
+			}
+		}
+
+		if ( max > -1 )
+		{
+			if ( sites[maxtag].uniqSupport > sites[maxtag].support * 0.1 )
+			{
+				for ( k = i ; k < j ; ++k )
+					if ( sites[k].uniqSupport < 0.05 * sites[k].support )
+					{
+						sites[k].support = -1 ;
+
+						int direction ;
+						if ( sites[k].oppositePos < sites[k].pos )
+							direction = -1 ;
+						else
+							direction = 1 ;
+						int l ;
+						for ( l = k ; l >= 0 && l < size ; l += direction )
+							if ( sites[l].pos == sites[k].oppositePos && sites[l].oppositePos == sites[k].pos )
+							{
+								sites[l].support = -1 ;
+								break ;
+							}
+					}
+			}
+			else 
+			{
+				for ( k = i ; k < j ; ++k )
+				{
+					if ( sites[k].support <= 10 )
+					{
+						sites[k].support = -1 ;
+
+						int direction ;
+						if ( sites[k].oppositePos < sites[k].pos )
+							direction = -1 ;
+						else
+							direction = 1 ;
+						int l ;
+						for ( l = k ; l >= 0 && l < size ; l += direction )
+							if ( sites[l].pos == sites[k].oppositePos && sites[l].oppositePos == sites[k].pos )
+							{
+								sites[l].support = -1 ;
+								break ;
+							}
+					}
+				}
+			}
+		}
+
+		i = j ;
+	}
+
+	k = 0 ;
+	for ( i = 0 ; i < size ; ++i )
+	{
+		if ( sites[i].support > 0 )
+		{
+			sites[k] = sites[i] ;
+			++k ;
+		}
+	}
+	sites.resize( k ) ;
+
+}
+
+
+// When k=1, the gamma distribution becomes exponential distribution, and can be optimized analytically..
+// Maximize: sum_i z_i( log( 1/theta e^{-x_i / theta} )
+/*double ThetaOfExponentialDistribution( double *x, double *z, int n )
+{
+	double sumZ = 0;
+	double sumZX = 0 ;
+	for ( i = 0 ; i < n ; ++i )
+	{
+		sumZ += z[i] ;
+		sumZX += z[i] * x[i] ;
+	}
+}*/
+
+// for boundK, if it is positive, it represent the upper bound. If it is negative, -boundK will be the lower bound for k.
+// if boundK==0, there is no extra bound.
+// The same logic for boundProduct, which bounds k*theta
+void GradientDescentGammaDistribution( double &k, double &theta, double initK, double initTheta, double lowerBoundK, double upperBoundK, 
+	double lowerBoundMean, double upperBoundMean, double *x, double *z, int n ) 
+{
+	int i ;
+	k = initK ;
+	theta = initTheta ;
+	double c = 0.5 ;
+	int iterCnt = 1 ;
+
+	double sumZ = 0 ;
+	double sumZX = 0 ;
+	double sumZLogX = 0 ;
+	double Hessian[2][2] ; // 0 for k, 1 for theta
+	double inverseHessian[2][2] ;
+	int tmp ;
+
+	double positiveKRecord = -5, positiveThetaRecord = -5 ; // record the value of k, theta when theta, k becomes non-positive.
+
+	for ( i = 0 ; i < n ; ++i )	
+	{
+		sumZ += z[i] ;
+		sumZX += z[i] * x[i]  ;
+		sumZLogX += z[i] * log( x[i] ) ;
+	}
+
+	while ( 1 )
+	{
+		double gradK = 0 ;
+		double gradTheta = 0 ;
+
+		double prevK = k ;
+		double prevTheta = theta ;
+		double digammaK = digammal( k ) ;
+
+		gradK = sumZ * ( -log( theta ) - digammaK ) + sumZLogX ;
+		gradTheta = -sumZ * ( k / theta ) + sumZX / ( theta * theta ) ;
+
+		Hessian[0][0] = -sumZ * trigamma( k, &tmp ) ;
+		Hessian[0][1] = -sumZ / theta ; // \partial l / ( \partial k \partial theta)
+		Hessian[1][0] = -sumZ / theta ;
+		Hessian[1][1] = sumZ * k / ( theta * theta ) - 2 * sumZX / ( theta * theta * theta ) ;
+
+		double det = Hessian[0][0] * Hessian[1][1] - Hessian[0][1] * Hessian[1][0] ;
+		/*printf( "%s iter %d:\n", __func__, iterCnt ) ;
+		printf( "%lf %lf %lf %lf\n", sumZ, k, theta, sumZX ) ;	
+		printf( "%lf %lf %lf\n", gradK, gradTheta, det ) ;	
+		printf( "%lf %lf %lf %lf\n", Hessian[0][0], Hessian[0][1], Hessian[1][0], Hessian[1][1] ) ;*/
+		if ( det <= 1e-4 && det >=-1e-4 )
+		{
+			k = k + c / iterCnt * gradK ;
+			theta = theta + c / iterCnt * gradTheta ;
+		}
+		else
+		{
+			inverseHessian[0][0] = Hessian[1][1] / det ;
+			inverseHessian[0][1] = -Hessian[0][1] / det ;
+			inverseHessian[1][0] = -Hessian[1][0] / det ;
+			inverseHessian[1][1] = Hessian[0][0] / det ;
+			//printf( "%lf %lf %lf %lf: %lf\n=====\n", inverseHessian[0][0], inverseHessian[0][1], inverseHessian[1][0], inverseHessian[1][1],
+			//	Hessian[1][0] * inverseHessian[0][1] + Hessian[1][1] * inverseHessian[1][1] ) ;	
+			double step = 0.5 ;
+			k = k - step * ( inverseHessian[0][0] * gradK + inverseHessian[0][1] * gradTheta ) ;
+			theta = theta - step * ( inverseHessian[1][0] * gradK + inverseHessian[1][1] * gradTheta ) ;
+			
+			bool flag = false ;
+			if ( k <= 1e-6 )
+			{
+				step = ( prevK - 1e-6 ) / ( inverseHessian[0][0] * gradK + inverseHessian[0][1] * gradTheta ) ;
+
+				if ( ABS( theta - positiveThetaRecord ) < 1e-5 )
+					flag = true ;
+				positiveThetaRecord = theta ;
+			}
+			if ( theta <= 1e-6 )
+			{
+				double tmp = ( prevTheta - 1e-6 ) / ( inverseHessian[1][0] * gradK + inverseHessian[1][1] * gradTheta ) ;
+				if ( tmp < step )
+					step = tmp ;
+
+				if ( ABS( k - positiveKRecord ) < 1e-5 )
+					flag = true ;
+				positiveKRecord = k ;
+			}
+
+			if ( step != 0.5 )
+			{
+				k = prevK - step * ( inverseHessian[0][0] * gradK + inverseHessian[0][1] * gradTheta ) ;
+				theta = prevTheta - step * ( inverseHessian[1][0] * gradK + inverseHessian[1][1] * gradTheta ) ;
+			}
+
+			/*if ( flag ) 
+			{
+				k = prevK ;
+				theta = prevTheta ;
+				break ;
+			}*/
+		}
+
+		if ( upperBoundK > 0 && k > upperBoundK )
+			k = upperBoundK ;
+		else if ( lowerBoundK > 0 && k < lowerBoundK )
+			k = lowerBoundK ;
+
+		if ( upperBoundMean > 0 && k * theta > upperBoundMean )
+		{
+			theta = upperBoundMean / k ;
+		}
+		else if ( lowerBoundMean > 0 && k * theta < lowerBoundMean )
+		{
+			theta = lowerBoundMean / k ;
+		}
+
+		if ( k <= 1e-6 )
+		{
+			k = 1e-6 ;
+		}
+
+		if ( theta <= 1e-6 )
+		{
+			theta = 1e-6 ;
+		}
+
+		double diff = ABS( prevK - k ) + ABS( prevTheta - theta ) ;
+		if ( diff < 1e-5 ) 
+			break ;
+		
+		++iterCnt ;
+		//if ( det <= 1e-4 && det >=-1e-4 && k >= 5000 ) //&& diff < 1 )
+		if ( k >= 10000 ) //&& diff < 1 )
+		{
+			k = prevK ;
+			theta = prevTheta ;
+			break ;
+		}
+		if ( iterCnt == 1000 )
+			break ;
+	}
+}
+
+double MixtureGammaEM( double *x, int n, double &pi, double *k, double *theta, int tries, double meanBound[2], int iter = 1000 )
+{
+	int i ;
+	double *z = new double[n] ; // the expectation that it assigned to model 0.
+	double *oneMinusZ = new double[n] ;
+	int t = 0 ;
+	double history[5] = {-1, -1, -1, -1, -1} ;
+	double maxX = -1 ;
+	double sumX = 0 ;
+	if ( n <= 0 )	
+		return 0 ;
+
+	for ( i = 0 ; i < n ; ++i )
+	{
+		sumX += x[i] ;
+		if ( x[i] > maxX )
+			maxX = x[i] ;
+	}
+	if ( maxX > meanBound[1] && meanBound[1] >= 0 )
+		maxX = meanBound[1] ;
+
+	/*if ( meanBound[1] == -1 )
+	{
+		// The EM for coverage
+		maxX = 10.0 ;
+	}*/
+		
+	while ( 1 )
+	{
+		double npi, nk[2], ntheta[2] ;
+		double sum = 0 ;
+		for ( i = 0 ; i < n ; ++i )	
+		{
+			//double lf0 = -k[0] * log( theta[0] ) + ( k[0] - 1 ) * log( cov[i]) - cov[i] / theta[0] - lgamma( k[0] ); 
+			//double lf1 = -k[1] * log( theta[1] ) + ( k[1] - 1 ) * log( cov[i]) - cov[i] / theta[1] - lgamma( k[1] ); 
+			//z[i] = exp( lf0 + log( pi ) ) / ( exp( lf0 + log( pi ) ) + exp( lf1 + log( 1 - pi ) ) ) ;
+			if ( pi != 0 )
+				z[i] = MixtureGammaAssignment( x[i], pi, k, theta ) ;
+			else
+				z[i] = 0 ;
+			/*if ( isnan( z[i] ) )
+			{
+				printf( "nan: %lf %lf %lf %lf\n", x[i], pi, k, theta ) ;
+			}*/
+			oneMinusZ[i] = 1 - z[i] ;
+			sum += z[i] ;
+		}
+
+		// compute new pi.
+		npi = sum / n ;
+
+		// Use gradient descent to compute new k and theta.
+		if ( 1 ) //pi > 0 )
+		{
+			double bound ;
+			if ( meanBound[1] != -1 )  // the EM for ratio
+			{
+				bound = ( theta[1] * k[1] > 1 ) ? 1 : ( theta[1] * k[1] ) / ( 1 + tries );
+				GradientDescentGammaDistribution( nk[0], ntheta[0], k[0], theta[0], k[1], -1, -1, bound, x, z, n ) ; // It seems setting an upper bound 1 for k[0] is not a good idea.
+			}
+			else
+			{
+				bound = ( theta[1] * k[1] > 1 ) ? 1 : ( theta[1] * k[1] ) / ( 1 + tries ) ;
+				GradientDescentGammaDistribution( nk[0], ntheta[0], k[0], theta[0], k[1], -1, meanBound[0], bound, x, z, n ) ; // It seems setting an upper bound 1 for k[0] is not a good idea.
+			}
+			GradientDescentGammaDistribution( nk[1], ntheta[1], k[1], theta[1], -1, k[0], theta[0] * k[0], maxX, x, oneMinusZ,  n ) ;
+		}
+		else
+		{
+			GradientDescentGammaDistribution( nk[1], ntheta[1], k[1], theta[1], 0, 0, 0, 0, x, oneMinusZ,  n ) ;
+		}
+
+		double diff ;
+		if ( isnan( npi ) || isnan( nk[0] ) || isnan( nk[1] ) || isnan( ntheta[0] ) || isnan( ntheta[1] ) )
+		{
+			delete[] z ;
+			delete[] oneMinusZ ;
+			return -1 ;
+		}
+		diff = ABS( nk[0] - k[0] ) + ABS( nk[1] - k[1] )
+			+ ABS( ntheta[0] - theta[0] ) + ABS( ntheta[1] - theta[1] ) ; // pi is fully determined by these 4 parameters.
+		if ( diff < 1e-4 )
+			break ;
+		diff = ABS( nk[0] - history[1] ) + ABS( nk[1] - history[2] )
+			+ ABS( ntheta[0] - history[3]  ) + ABS( ntheta[1] - history[4] ) ; // pi is fully determined by these 4 parameters.
+		if ( diff < 1e-4 )
+			break ;
+
+		history[0] = pi ;
+		history[1] = k[0] ;
+		history[2] = k[1] ;
+		history[3] = theta[0] ;
+		history[4] = theta[1] ;
+		
+		pi = npi ;
+		k[0] = nk[0] ;
+		k[1] = nk[1] ;
+		theta[0] = ntheta[0] ;
+		theta[1] = ntheta[1] ;
+
+		/*double logLikelihood = 0 ;
+		for ( i = 0 ; i < n ; ++i )
+			logLikelihood += log( pi * exp( LogGammaDensity( x[i], k[0], theta[0]) ) + 
+				(1 - pi ) * exp( LogGammaDensity( x[i], k[1], theta[1] ) ) ) ;*/
+
+		//printf( "%d: %lf %lf %lf %lf %lf\n", t, pi, k[0], theta[0], k[1], theta[1] ) ;
+		
+		++t ;
+		if ( iter != -1 && t >= iter )
+			break ;
+	}
+	delete[] z ;
+	delete[] oneMinusZ ;
+	return 0 ;
+}
+
+bool IsParametersTheSame( double *k, double *theta )
+{
+	if ( ABS( k[0] - k[1] ) < 1e-2 && ABS( theta[0] - theta[1] ) < 1e-2 )	
+		return true ;
+	return false ;
+}
+
+int RatioAndCovEM( double *covRatio, double *cov, int n, double &piRatio, double kRatio[2], 
+	double thetaRatio[2], double &piCov, double kCov[2], double thetaCov[2] )
+{
+	int i ;
+	piRatio = 0.6 ; // mixture coefficient for model 0 and 1
+	kRatio[0] = 0.9 ;
+	kRatio[1] = 0.45 ;
+	thetaRatio[0] = 0.05 ;
+	thetaRatio[1] = 1 ;
+	double meanBound[2] = {-1, 1} ; // [0] is for the lower bound of the noise model, [1] is for the upper bound of the true model
+	
+	/*double *filteredCovRatio = new double[n] ;// ignore the ratio that is greater than 5.
+	int m = 0 ;
+	for ( i = 0 ; i < n ; ++i )
+		if ( covRatio[i] < 1.0 )
+		{
+			filteredCovRatio[m] = covRatio[i] ;
+			++m ;
+		}*/
+	srand( 17 ) ;
+	int maxTries = 10 ;
+	int t = 0 ;
+	double *buffer = new double[n] ;
+	for ( i = 0 ; i < n ; ++i )
+		buffer[i] = covRatio[i] ;
+	qsort( buffer, n, sizeof( double ), CompDouble ) ;
+	//covRatio = buffer ;
+	while ( 1 )
+	{
+		//printf( "EM\n" )  ;
+		MixtureGammaEM( covRatio, n, piRatio, kRatio, thetaRatio, t, meanBound ) ;
+		//printf( "%lf %lf %lf %lf %lf\n", piRatio, kRatio[0], kRatio[1], thetaRatio[0], thetaRatio[1] ) ;
+		if ( piRatio > 0.999 || piRatio < 0.001 || IsParametersTheSame( kRatio, thetaRatio ) )
+		{
+			++t ;
+			if ( t > maxTries )
+				break ;
+			piRatio = 0.6 ;
+			kRatio[0] += ( ( rand() * 0.5 - RAND_MAX ) / (double)RAND_MAX * 0.1 ) ;
+			if ( kRatio[0] <= 0 )
+				kRatio[0] = 0.9 ;
+			kRatio[1] += ( ( rand() * 0.5 - RAND_MAX ) / (double)RAND_MAX * 0.1 ) ;
+			if ( kRatio[1] <= 0 )
+				kRatio[1] = 0.45 ;
+			thetaRatio[0] += ( ( rand() * 0.5 - RAND_MAX ) / (double)RAND_MAX * 0.1 ) ;
+			if ( thetaRatio[0] <= 0 )
+				thetaRatio[0] = 0.05 ;
+			thetaRatio[1] += ( ( rand() * 0.5 - RAND_MAX ) / (double)RAND_MAX * 0.1 ) ;
+			if ( thetaRatio[1] <= 0 )
+				thetaRatio[1] = 1 ;
+			if ( kRatio[0] < kRatio[1] )
+			{	
+				if ( rand() & 1 )
+					kRatio[0] = kRatio[1] ;
+				else
+					kRatio[1] = kRatio[0] ;
+			}
+			if ( kRatio[0] * thetaRatio[0] > kRatio[1] * thetaRatio[1] )
+			{
+				thetaRatio[0] = kRatio[1] * thetaRatio[1] / kRatio[0] ;
+			}
+			//printf( "%lf %lf %lf %lf %lf\n", piRatio, kRatio[0], kRatio[1], thetaRatio[0], thetaRatio[1] ) ;
+
+			continue ;
+		}
+		
+		break ;
+	}
+	//delete[] filteredCovRatio ;
+	if ( t > maxTries && piRatio > 0.999 )
+	{
+		/*piRatio = 0.6 ; // mixture coefficient for model 0 and 1
+		kRatio[0] = 0.9 ;
+		kRatio[1] = 0.45 ;
+		thetaRatio[0] = 0.05 ;
+		thetaRatio[1] = 1 ;*/
+		piRatio = 0.999 ;
+	}
+	if ( IsParametersTheSame( kRatio, thetaRatio ) || piRatio <= 1e-3 )
+		piRatio = 1e-3 ;	
+	
+	piCov = piRatio ; // mixture coefficient for model 0 and 1
+	kCov[0] = 0.9 ;
+	kCov[1] = 0.45 ;
+	thetaCov[0] = 3 ;
+	thetaCov[1] = 12 ;
+	
+	// only do one iteration of EM, so that pi does not change?
+	// But it seems it still better to run full EM.
+	meanBound[0] = 1.01 ;
+	meanBound[1] = -1 ;
+
+	//printf( "for coverage:\n" ) ;
+	//piCov = 0.001000 ;
+	MixtureGammaEM( cov, n, piCov, kCov, thetaCov, 0, meanBound ) ;	
+	//printf( "for coverage done\n" ) ;
+	piCov = piRatio ;
+
+	delete []buffer ;
+
+	return 0 ;
+}
+
+double GetPValue( double x, double *k, double *theta )
+{
+	int fault ;
+	double p ;
+	p = 1 - gammad( x / theta[0], k[0], &fault ) ;
+	return p ;
+}
+
+// if x's value is less than the average of (k0-1)*theta0, then we force x=(k0-1)*theta0,
+//    the mode of the model 0. Of course, it does not affect when k0<=1 already.
+double MixtureGammaAssignmentAdjust( double x, double pi, double* k, double *theta ) 
+{
+	if ( x < ( k[0] - 1 ) * theta[0] )
+	{
+		x = ( k[0] - 1 ) * theta[0] ;
+	}
+	return MixtureGammaAssignment( x, pi, k, theta ) ;
+}
+
+
+// Transform the cov number for better fitting 
+double TransformCov( double c )
+{
+	double ret ;
+	// original it is c-1.
+	// Use -2 instead of -1 is that many region covered to 1 reads will be filtered when
+	// build the subexons.
+	//
+	//ret = sqrt( c ) - 1 ;
+	if ( c <= 2 + 1e-6 )
+		ret = 1e-6 ;
+	else
+		ret = c - 2 ;
+	return ret ;
+	//return log( c ) / log( 2.0 ) ;
+}
+
+int main( int argc, char *argv[] )
+{
+	int i, j ;
+	bool noStats = false ;
+	if ( argc < 3 )
+	{
+		fprintf( stderr, usage ) ;
+		exit( 1 ) ;
+	}
+
+	gMinDepth = 2 ;
+
+	for ( i = 3 ; i < argc ; ++i )
+	{
+		if ( !strcmp( argv[i], "--noStats" ) )
+		{
+			noStats = true ;
+			continue ;
+		}
+		else if ( !strcmp( argv[i], "--minDepth" ) )
+		{
+			gMinDepth = atoi( argv[i + 1] ) ;
+			++i ;
+			continue ;
+		}
+		else
+		{
+			fprintf( stderr, "Unknown argument: %s\n", argv[i] ) ;
+			return 0 ;
+		}
+	}
+
+	Alignments alignments ;
+	alignments.Open( argv[1] ) ;
+	std::vector<struct _splitSite> splitSites ; // only compromised the 
+	std::vector<struct _splitSite> allSplitSites ;
+
+	// read in the splice site
+	FILE *fp ;
+	fp = fopen( argv[2], "r" ) ;
+	char chrom[50] ;
+	int64_t start, end ;
+	int support ;
+	char strand[3] ;
+	int uniqSupport, secondarySupport, uniqEditDistance, secondaryEditDistance ;
+	while ( fscanf( fp, "%s %" PRId64 " %" PRId64 " %d %s %d %d %d %d", chrom, &start, &end, &support, strand, 
+				&uniqSupport, &secondarySupport, &uniqEditDistance, &secondaryEditDistance ) != EOF )
+	{
+		if ( support <= 0 )
+			continue ;
+		//if ( !( uniqSupport >= 1 
+		//	|| secondarySupport > 10 ) )
+		//if ( uniqSupport <= 0.01 * ( uniqSupport + secondarySupport ) || ( uniqSupport == 0 && secondarySupport < 20 ) )
+		//if ( uniqSupport == 0 && secondarySupport <= 10 )
+		//	continue ;
+		int chrId = alignments.GetChromIdFromName( chrom ) ; 
+		struct _splitSite ss ;
+		--start ;
+		--end ;
+		ss.pos = start ;
+		ss.chrId = chrId ;
+		ss.type = 2 ;
+		ss.oppositePos = end ;
+		ss.strand = strand[0] ;
+		ss.support = support ;
+		ss.uniqSupport = uniqSupport ;
+		ss.mismatchSum = uniqEditDistance + secondaryEditDistance ;
+		splitSites.push_back( ss ) ;
+
+		ss.pos = end ; 
+		ss.type = 1 ;
+		ss.oppositePos = start ;
+		ss.strand = strand[0] ;
+		ss.support = support ;
+		ss.uniqSupport = uniqSupport ;
+		ss.mismatchSum = uniqEditDistance + secondaryEditDistance ;
+		splitSites.push_back( ss ) ;
+	}
+	fclose( fp ) ;
+	//printf( "ss:%d\n", splitSites.size() ) ;
+	
+	//printf( "ss:%d\n", splitSites.size() ) ;
+	
+	alignments.GetGeneralInfo( true ) ;
+	// Build the blocks
+	Blocks regions ;
+	alignments.Rewind() ;
+	regions.BuildExonBlocks( alignments ) ;
+	//printf( "%d\n", regions.exonBlocks.size() ) ;
+	
+	FilterAndSortSplitSites( splitSites ) ; 
+	FilterNearSplitSites( splitSites ) ;
+	FilterRepeatSplitSites( splitSites ) ;
+	regions.FilterSplitSitesInRegions( splitSites ) ;
+	regions.FilterGeneMergeSplitSites( splitSites ) ;
+
+
+	allSplitSites = splitSites ;
+	KeepUniqSplitSites( splitSites ) ;
+	
+	//for ( i = 0 ; i < splitSites.size() ; ++i )
+	//	printf( "%d %d\n", splitSites[i].pos + 1, splitSites[i].oppositePos + 1 ) ;
+	// Split the blocks using split site
+	regions.SplitBlocks( alignments, splitSites ) ;
+	//printf( "%d\n", regions.exonBlocks.size() ) ;
+	/*for ( i = 0 ; i < regions.exonBlocks.size() ; ++i )
+	{
+		struct _block &e = regions.exonBlocks[i] ;
+		printf( "%s %" PRId64 " %" PRId64 " %d %d\n", alignments.GetChromName( e.chrId ), e.start + 1, e.end + 1,  e.leftType, e.rightType ) ;
+	}
+	return 0 ;*/
+	// Recompute the coverage for each block. 
+	alignments.Rewind() ;
+	//printf( "Before computeDepth: %d\n", regions.exonBlocks.size() ) ;
+
+	regions.ComputeDepth( alignments ) ;
+	//printf( "After computeDepth: %d\n", regions.exonBlocks.size() ) ;
+
+	// Merge blocks that may have a hollow coverage by accident.
+	regions.MergeNearBlocks() ;
+	//printf( "After merge: %d\n", regions.exonBlocks.size() ) ;
+	
+	// Put the intron informations
+	regions.AddIntronInformation( allSplitSites, alignments ) ;
+	//printf( "After add information.\n" ) ;
+
+	// Compute the average ratio against the left and right connected subexons.
+	regions.ComputeRatios() ;
+	//printf( "After compute ratios.\n" ) ;	
+	
+	//printf( "Finish building regions.\n" ) ;	
+	if ( noStats ) 
+	{ 
+		// just output the subexons.
+		if ( realpath( argv[1], buffer ) == NULL )
+		{
+			strcpy( buffer, argv[1] ) ;
+		}
+		printf( "#%s\n", buffer ) ;
+		printf( "#fitted_ir_parameter_ratio: pi: -1 k0: -1 theta0: -1 k1: -1 theta1: -1\n" ) ;
+		printf( "#fitted_ir_parameter_cov: pi: -1 k0: -1 theta0: -1 k1: -1 theta1: -1\n" ) ;
+		
+		int blockCnt = regions.exonBlocks.size() ;
+		for ( int i = 0 ; i < blockCnt ; ++i )
+		{
+			struct _block &e = regions.exonBlocks[i] ;
+			double avgDepth = (double)e.depthSum / ( e.end - e.start + 1 ) ;
+			printf( "%s %" PRId64 " %" PRId64 " %d %d %lf -1 -1 -1 -1 ", alignments.GetChromName( e.chrId ), e.start + 1, e.end + 1, e.leftType, e.rightType, avgDepth ) ;
+			int prevCnt = e.prevCnt ;
+			if ( i > 0 && e.start == regions.exonBlocks[i - 1].end + 1 &&
+					e.leftType == regions.exonBlocks[i - 1].rightType )
+			{
+				printf( "%d ", prevCnt + 1 ) ;
+				for ( j = 0 ; j < prevCnt ; ++j )
+					printf( "%" PRId64 " ", regions.exonBlocks[ e.prev[j] ].end + 1 ) ;
+				printf( "%" PRId64 " ", regions.exonBlocks[i - 1].end + 1 ) ;
+			}
+			else
+			{
+				printf( "%d ", prevCnt ) ;
+				for ( j = 0 ; j < prevCnt ; ++j )
+					printf( "%" PRId64 " ", regions.exonBlocks[ e.prev[j] ].end + 1 ) ;
+			}
+
+			int nextCnt = e.nextCnt ;
+			if ( i < blockCnt - 1 && e.end == regions.exonBlocks[i + 1].start - 1 &&
+					e.rightType == regions.exonBlocks[i + 1].leftType )
+			{
+				printf( "%d %" PRId64 " ", nextCnt + 1, regions.exonBlocks[i + 1].start + 1 ) ;
+			}
+			else
+				printf( "%d ", nextCnt ) ;
+			for ( j = 0 ; j < nextCnt ; ++j )
+				printf( "%" PRId64 " ", regions.exonBlocks[ e.next[j] ].start + 1 ) ;
+			printf( "\n" ) ;
+
+		}
+		return 0 ;
+	}
+
+	// Extract the blocks for different events.
+	int blockCnt = regions.exonBlocks.size() ;
+	std::vector<struct _block> irBlocks ; // The regions corresponds to intron retention events.
+	double *leftClassifier = new double[ blockCnt ] ; 
+	double *rightClassifier = new double[ blockCnt ] ;
+	std::vector<struct _block> overhangBlocks ; //blocks like (...[ or ]...)
+	std::vector<struct _block> islandBlocks ; // blocks like (....) 
+
+	for ( i = 0 ; i < blockCnt ; ++i )	
+	{
+		int ltype = regions.exonBlocks[i].leftType ;
+		int rtype = regions.exonBlocks[i].rightType ;
+		leftClassifier[i] = -1 ;
+		rightClassifier[i] = -1 ;
+		
+		//double avgDepth = (double)regions.exonBlocks[i].depthSum / ( regions.exonBlocks[i].end - regions.exonBlocks[i].start + 1 ) ;
+		
+		if ( ltype == 2 && rtype == 1 )
+		{
+			// candidate intron retention.
+			// Note that when I compute the ratio, it is already made sure that the avgDepth>1.
+			double ratio = regions.PickLeftAndRightRatio( regions.exonBlocks[i] ) ;
+
+			//printf( "%lf %lf\n", regions.exonBlocks[i].leftRatio, regions.exonBlocks[i].rightRatio ) ;
+			if ( ratio > 0 )
+			{
+				regions.exonBlocks[i].ratio = ratio ;
+				irBlocks.push_back( regions.exonBlocks[i] ) ;
+				irBlocks[ irBlocks.size() - 1 ].contigId = i ;
+			}
+		}
+		else if ( ( ltype == 0 && rtype == 1 ) || ( ltype == 2 && rtype == 0 ) )
+		{
+			// subexons like (...[ or ]...)
+			double ratio ;
+			if ( ltype == 0 )
+			{
+				ratio = regions.exonBlocks[i].rightRatio ;
+			}
+			else if ( ltype == 2 )
+			{
+				ratio = regions.exonBlocks[i].leftRatio ;	
+			}
+			if ( ratio > 0 )
+			{
+				regions.exonBlocks[i].ratio = ratio ;
+				overhangBlocks.push_back( regions.exonBlocks[i] ) ;
+				overhangBlocks[ overhangBlocks.size() - 1].contigId = i ;
+			}
+		}
+		else if ( ltype == 0 && rtype == 0 )
+		{
+			islandBlocks.push_back( regions.exonBlocks[i] ) ;
+			islandBlocks[ islandBlocks.size() - 1].contigId = i ;
+		}
+	}
+	
+	// Compute the histogram for each intron.
+	int irBlockCnt = irBlocks.size() ;
+	double *cov = new double[irBlockCnt] ;
+	double *covRatio = new double[ irBlockCnt ] ;
+	double piRatio, kRatio[2], thetaRatio[2] ;
+	double piCov, kCov[2], thetaCov[2] ;
+	for ( i = 0 ; i < irBlockCnt ; ++i )
+	{
+		double avgDepth = regions.GetAvgDepth( irBlocks[i] ) ;
+		//cov[i] = ( avgDepth - 1 ) / ( flankingAvg - 1 ) ;
+		cov[i] = TransformCov( avgDepth ) ;
+
+		covRatio[i] = regions.PickLeftAndRightRatio( irBlocks[i] ) ; 
+		//cov[i] = avgDepth / anchorAvg ;
+		//printf( "%"PRId64" %d %d: %lf %lf\n", irBlocks[i].depthSum, irBlocks[i].start, irBlocks[i].end, avgDepth, cov[i] ) ;
+	}
+
+	/*fp = fopen( "ratio.out", "r" ) ;
+	int irBlockCnt = 0 ;
+	double *cov = new double[10000] ;
+	while ( 1 ) 
+	{
+		double r ;
+		if ( fscanf( fp, "%lf", &r ) == EOF )
+			break ;
+		cov[ irBlockCnt ] = r ;
+		++irBlockCnt ;
+	}
+	fclose( fp ) ;*/
+	RatioAndCovEM( covRatio, cov, irBlockCnt, piRatio, kRatio, thetaRatio, piCov, kCov, thetaCov ) ;
+
+	for ( i = 0 ; i < irBlockCnt ; ++i )
+	{
+		//double lf0 = -k[0] * log( theta[0] ) + ( k[0] - 1 ) * log( cov[i]) - cov[i] / theta[0] - lgamma( k[0] ) ;
+		//double lf1 = -k[1] * log( theta[1] ) + ( k[1] - 1 ) * log( cov[i]) - cov[i] / theta[1] - lgamma( k[1] ) ;
+
+		double p1, p2, p ;
+		
+		p1 = MixtureGammaAssignmentAdjust( covRatio[i], piRatio, kRatio, thetaRatio ) ;
+		p2 = MixtureGammaAssignmentAdjust( cov[i], piCov, kCov, thetaCov  ) ;
+
+		/*p1 = GetPValue( covRatio[i], kRatio, thetaRatio ) ; //1 - gammad( covRatio[i] / thetaRatio[0], kRatio[0], &fault ) ;
+		if ( piRatio != 0 )
+			p2 = GetPValue( cov[i], kCov, thetaCov ) ;//1 - gammad( cov[i] / thetaCov[0], kCov[0], &fault ) ;
+		else
+			p2 = p1 ;*/
+		//printf( "%lf %lf: %lf %lf\n", covRatio[i], cov[i], p1, p2 ) ;
+		p = p1 > p2 ? p1 : p2 ;
+		
+		
+		//printf( "%d %d: avg: %lf ratio: %lf p: %lf\n", irBlocks[i].start, irBlocks[i].end, irBlocks[i].depthSum / (double)( irBlocks[i].end - irBlocks[i].start + 1 ), covRatio[i], 
+		//		p ) ;	
+		leftClassifier[ irBlocks[i].contigId ] = p ;
+		rightClassifier[ irBlocks[i].contigId ] = p ;
+	}
+
+	// Process the classifier for overhang subexons and the subexons to see whether we need soft boundary
+	int overhangBlockCnt = overhangBlocks.size() ;
+	delete []cov ;
+	delete []covRatio ;
+	
+	cov = new double[ overhangBlockCnt ] ;
+	covRatio = new double[overhangBlockCnt] ;
+	double overhangPiRatio, overhangKRatio[2], overhangThetaRatio[2] ;
+	double overhangPiCov, overhangKCov[2], overhangThetaCov[2] ;
+
+	for ( i = 0 ; i < overhangBlockCnt ; ++i )	
+	{
+		covRatio[i] = overhangBlocks[i].ratio ;
+		cov[i] = TransformCov( regions.GetAvgDepth( overhangBlocks[i] ) ) ;
+	}
+	RatioAndCovEM( covRatio, cov, overhangBlockCnt, overhangPiRatio, overhangKRatio, overhangThetaRatio, overhangPiCov, overhangKCov, overhangThetaCov ) ;
+
+	for ( i = 0 ; i < overhangBlockCnt ; ++i )
+	{
+		//double lf0 = -k[0] * log( theta[0] ) + ( k[0] - 1 ) * log( cov[i]) - cov[i] / theta[0] - lgamma( k[0] ) ;
+		//double lf1 = -k[1] * log( theta[1] ) + ( k[1] - 1 ) * log( cov[i]) - cov[i] / theta[1] - lgamma( k[1] ) ;
+
+		double p1, p2, p ;
+		p1 = MixtureGammaAssignmentAdjust( covRatio[i], overhangPiRatio, overhangKRatio, overhangThetaRatio ) ;
+		p2 = MixtureGammaAssignmentAdjust( cov[i], overhangPiCov, overhangKCov, overhangThetaCov  ) ;
+			
+		/*p1 = GetPValue( covRatio[i], overhangKRatio, overhangThetaRatio ) ; //1 - gammad( covRatio[i] / thetaRatio[0], kRatio[0], &fault ) ;
+		if ( overhangPiRatio != 0)
+			p2 = GetPValue( cov[i], overhangKCov, overhangThetaCov ) ;//1 - gammad( cov[i] / thetaCov[0], kCov[0], &fault ) ;
+		else
+			p2 = p1 ;*/
+
+		//p = p1 < p2 ? p1 : p2 ;
+		p = sqrt( p1 * p2 ) ;
+		
+		int idx = overhangBlocks[i].contigId ;
+		if ( regions.exonBlocks[idx].rightType == 0 )
+			leftClassifier[ idx ] = rightClassifier[ idx ] = p ;
+		else
+			leftClassifier[ idx ] = rightClassifier[ idx ] = p ;
+	}
+
+	for ( i = 0 ; i < blockCnt ; ++i )		
+	{
+		struct _block &e = regions.exonBlocks[i] ;
+		//if ( ( e.leftType == 0 && e.rightType == 1 ) || 
+		// variance-stabailizing transformation of poisson distribution. But we are more conservative here.
+		// The multiply 2 before that is because we ignore the region below 0, so we need to somehow renormalize the distribution.
+		if ( e.leftType == 1 )
+		{
+			if ( e.leftRatio >= 0 )
+				leftClassifier[i] = 2 * alnorm( e.leftRatio * 2.0 , true ) ;
+			else
+				leftClassifier[i] = 1 ;
+		}
+		/*else if ( e.leftType == 0 )
+		{
+			// If this region is a start of a gene, the other sample might introduce
+			//    a new intron before it. So we want to test whether this region can still
+			//    be a start of a gene even there is an intron before it.
+			for ( j = i + 1 ; j < blockCnt ; ++j )
+			{
+				if ( regions.exonBlocks[j].contigId != regions.exonBlocks[i].contigId )
+					break ;
+			}
+
+			for ( k = i ; k < j ; ++k )
+				if ( regions.exonBlocks[j].leftType == 1 )
+					break ;
+			if ( k >= j )
+			{
+				leftClassifier[i] = alnorm( )
+			}
+		}*/
+
+		//if ( ( e.rightType == 0 && e.leftType == 2 ) || 
+		if ( e.rightType == 2 )
+		{
+			if ( e.rightRatio >= 0 )
+				rightClassifier[i] = 2 * alnorm( e.rightRatio * 2.0, true ) ;
+			else
+				rightClassifier[i] = 1 ;
+		}
+	}
+
+	// Process the result for subexons seems like single-exon transcript (...)
+	int islandBlockCnt = islandBlocks.size() ;
+	//std::sort( islandBlocks.begin(), islandBlocks.end(), CompBlocksByAvgDepth ) ;
+	for ( i = 0, j = 0 ; i < islandBlockCnt ; ++i )
+	{
+		/*if ( regions.GetAvgDepth( islandBlocks[i] ) != regions.GetAvgDepth( islandBlocks[j] ) )
+			j = i ;
+		leftClassifier[ islandBlocks[i].contigId ] = 1 - (j + 1) / (double)( islandBlockCnt + 1 ) ;
+		rightClassifier[ islandBlocks[i].contigId ] = 1 - (j + 1) / (double)( islandBlockCnt + 1 ) ;*/
+		double p = GetPValue( TransformCov( regions.GetAvgDepth( islandBlocks[i] ) ), kCov, thetaCov ) ;
+		leftClassifier[ islandBlocks[i].contigId ] = p ;
+		rightClassifier[ islandBlocks[i].contigId ] = p ;
+	}
+
+	
+	// Output the result.
+	if ( realpath( argv[1], buffer ) == NULL )
+	{
+		strcpy( buffer, argv[1] ) ;
+	}
+	printf( "#%s\n", buffer ) ;
+	// TODO: higher precision.
+	printf( "#fitted_ir_parameter_ratio: pi: %lf k0: %lf theta0: %lf k1: %lf theta1: %lf\n", piRatio, kRatio[0], thetaRatio[0], kRatio[1], thetaRatio[1] ) ;
+	printf( "#fitted_ir_parameter_cov: pi: %lf k0: %lf theta0: %lf k1: %lf theta1: %lf\n", piCov, kCov[0], thetaCov[0], kCov[1], thetaCov[1] ) ;
+	
+	printf( "#fitted_overhang_parameter_ratio: pi: %lf k0: %lf theta0: %lf k1: %lf theta1: %lf\n", overhangPiRatio, overhangKRatio[0], overhangThetaRatio[0], overhangKRatio[1], overhangThetaRatio[1] ) ;
+	printf( "#fitted_overhang_parameter_cov: pi: %lf k0: %lf theta0: %lf k1: %lf theta1: %lf\n", overhangPiCov, overhangKCov[0], overhangThetaCov[0], overhangKCov[1], overhangThetaCov[1] ) ;
+
+
+	for ( int i = 0 ; i < blockCnt ; ++i )
+	{
+		struct _block &e = regions.exonBlocks[i] ;
+		double avgDepth = regions.GetAvgDepth( e ) ;
+		printf( "%s %" PRId64 " %" PRId64 " %d %d %c %c %lf %lf %lf %lf %lf ", alignments.GetChromName( e.chrId ), e.start + 1, e.end + 1, e.leftType, e.rightType, 
+			e.leftStrand, e.rightStrand, avgDepth, 
+			e.leftRatio, e.rightRatio, leftClassifier[i], rightClassifier[i] ) ;
+		int prevCnt = e.prevCnt ;
+		if ( i > 0 && e.start == regions.exonBlocks[i - 1].end + 1 )
+			//&& e.leftType == regions.exonBlocks[i - 1].rightType )
+		{
+			printf( "%d ", prevCnt + 1 ) ;
+			for ( j = 0 ; j < prevCnt ; ++j )
+				printf( "%" PRId64 " ", regions.exonBlocks[ e.prev[j] ].end + 1 ) ;
+			printf( "%" PRId64 " ", regions.exonBlocks[i - 1].end + 1 ) ;
+		}
+		else
+		{
+			printf( "%d ", prevCnt ) ;
+			for ( j = 0 ; j < prevCnt ; ++j )
+				printf( "%" PRId64 " ", regions.exonBlocks[ e.prev[j] ].end + 1 ) ;
+		}
+
+		int nextCnt = e.nextCnt ;
+		if ( i < blockCnt - 1 && e.end == regions.exonBlocks[i + 1].start - 1 ) 
+			//&& e.rightType == regions.exonBlocks[i + 1].leftType )
+		{
+			printf( "%d %" PRId64 " ", nextCnt + 1, regions.exonBlocks[i + 1].start + 1 ) ;
+		}
+		else
+			printf( "%d ", nextCnt ) ;
+		for ( j = 0 ; j < nextCnt ; ++j )
+			printf( "%" PRId64 " ", regions.exonBlocks[ e.next[j] ].start + 1 ) ;
+		printf( "\n" ) ;
+	}
+
+	delete[] cov ;
+	delete[] covRatio ;
+	delete[] leftClassifier ;
+	delete[] rightClassifier ;
+}