Mercurial > repos > lsong10 > psiclass
diff PsiCLASS-1.0.2/samtools-0.1.19/bcftools/kfunc.c @ 0:903fc43d6227 draft default tip
Uploaded
author | lsong10 |
---|---|
date | Fri, 26 Mar 2021 16:52:45 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/PsiCLASS-1.0.2/samtools-0.1.19/bcftools/kfunc.c Fri Mar 26 16:52:45 2021 +0000 @@ -0,0 +1,162 @@ +#include <math.h> + + +/* Log gamma function + * \log{\Gamma(z)} + * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245 + */ +double kf_lgamma(double z) +{ + double x = 0; + x += 0.1659470187408462e-06 / (z+7); + x += 0.9934937113930748e-05 / (z+6); + x -= 0.1385710331296526 / (z+5); + x += 12.50734324009056 / (z+4); + x -= 176.6150291498386 / (z+3); + x += 771.3234287757674 / (z+2); + x -= 1259.139216722289 / (z+1); + x += 676.5203681218835 / z; + x += 0.9999999999995183; + return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5); +} + +/* complementary error function + * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt + * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66 + */ +double kf_erfc(double x) +{ + const double p0 = 220.2068679123761; + const double p1 = 221.2135961699311; + const double p2 = 112.0792914978709; + const double p3 = 33.912866078383; + const double p4 = 6.37396220353165; + const double p5 = .7003830644436881; + const double p6 = .03526249659989109; + const double q0 = 440.4137358247522; + const double q1 = 793.8265125199484; + const double q2 = 637.3336333788311; + const double q3 = 296.5642487796737; + const double q4 = 86.78073220294608; + const double q5 = 16.06417757920695; + const double q6 = 1.755667163182642; + const double q7 = .08838834764831844; + double expntl, z, p; + z = fabs(x) * M_SQRT2; + if (z > 37.) return x > 0.? 0. : 2.; + expntl = exp(z * z * - .5); + if (z < 10. / M_SQRT2) // for small z + p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0) + / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0); + else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65))))); + return x > 0.? 2. * p : 2. * (1. - p); +} + +/* The following computes regularized incomplete gamma functions. + * Formulas are taken from Wiki, with additional input from Numerical + * Recipes in C (for modified Lentz's algorithm) and AS245 + * (http://lib.stat.cmu.edu/apstat/245). + * + * A good online calculator is available at: + * + * http://www.danielsoper.com/statcalc/calc23.aspx + * + * It calculates upper incomplete gamma function, which equals + * kf_gammaq(s,z)*tgamma(s). + */ + +#define KF_GAMMA_EPS 1e-14 +#define KF_TINY 1e-290 + +// regularized lower incomplete gamma function, by series expansion +static double _kf_gammap(double s, double z) +{ + double sum, x; + int k; + for (k = 1, sum = x = 1.; k < 100; ++k) { + sum += (x *= z / (s + k)); + if (x / sum < KF_GAMMA_EPS) break; + } + return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum)); +} +// regularized upper incomplete gamma function, by continued fraction +static double _kf_gammaq(double s, double z) +{ + int j; + double C, D, f; + f = 1. + z - s; C = f; D = 0.; + // Modified Lentz's algorithm for computing continued fraction + // See Numerical Recipes in C, 2nd edition, section 5.2 + for (j = 1; j < 100; ++j) { + double a = j * (s - j), b = (j<<1) + 1 + z - s, d; + D = b + a * D; + if (D < KF_TINY) D = KF_TINY; + C = b + a / C; + if (C < KF_TINY) C = KF_TINY; + D = 1. / D; + d = C * D; + f *= d; + if (fabs(d - 1.) < KF_GAMMA_EPS) break; + } + return exp(s * log(z) - z - kf_lgamma(s) - log(f)); +} + +double kf_gammap(double s, double z) +{ + return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z); +} + +double kf_gammaq(double s, double z) +{ + return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z); +} + +/* Regularized incomplete beta function. The method is taken from + * Numerical Recipe in C, 2nd edition, section 6.4. The following web + * page calculates the incomplete beta function, which equals + * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b): + * + * http://www.danielsoper.com/statcalc/calc36.aspx + */ +static double kf_betai_aux(double a, double b, double x) +{ + double C, D, f; + int j; + if (x == 0.) return 0.; + if (x == 1.) return 1.; + f = 1.; C = f; D = 0.; + // Modified Lentz's algorithm for computing continued fraction + for (j = 1; j < 200; ++j) { + double aa, d; + int m = j>>1; + aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1)) + : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m)); + D = 1. + aa * D; + if (D < KF_TINY) D = KF_TINY; + C = 1. + aa / C; + if (C < KF_TINY) C = KF_TINY; + D = 1. / D; + d = C * D; + f *= d; + if (fabs(d - 1.) < KF_GAMMA_EPS) break; + } + return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f; +} +double kf_betai(double a, double b, double x) +{ + return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x); +} + +#ifdef KF_MAIN +#include <stdio.h> +int main(int argc, char *argv[]) +{ + double x = 5.5, y = 3; + double a, b; + printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x)); + printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y)); + a = 2; b = 2; x = 0.5; + printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b))); + return 0; +} +#endif