Mercurial > repos > lsong10 > psiclass
view PsiCLASS-1.0.2/Constraints.cpp @ 0:903fc43d6227 draft default tip
Uploaded
author | lsong10 |
---|---|
date | Fri, 26 Mar 2021 16:52:45 +0000 |
parents | |
children |
line wrap: on
line source
#include "Constraints.hpp" // return whether this constraint is compatible with the subexons. bool Constraints::ConvertAlignmentToBitTable( struct _pair *segments, int segCnt, struct _subexon *subexons, int seCnt, int seStart, struct _constraint &ct ) { int i, j, k ; k = seStart ; ct.vector.Init( seCnt ) ; // Each segment of an alignment can cover several subexons. // But the first and last segment can partially cover a subexon. for ( i = 0 ; i < segCnt ; ++i ) { int leftIdx, rightIdx ; // the range of subexons covered by this segment. leftIdx = -1 ; rightIdx = -1 ; for ( ; k < seCnt ; ++k ) { //if ( segments[0].b == 110282529 && segCnt == 2 ) // printf( "(%d:%d %d):(%d:%d %d)\n", i, (int)segments[i].a, (int)segments[i].b, k, (int)subexons[k].start, (int)subexons[k].end ) ; if ( subexons[k].start > segments[i].b ) break ; if ( segments[i].a > subexons[k].end ) continue ; int relaxedWidth = 0 ; if ( ( subexons[k].start >= segments[i].a && subexons[k].end <= segments[i].b ) || ( i == 0 && subexons[k].start - relaxedWidth < segments[i].a && subexons[k].end <= segments[i].b ) || ( i == segCnt - 1 && subexons[k].start >= segments[i].a && subexons[k].end + relaxedWidth > segments[i].b ) || ( i == 0 && i == segCnt - 1 && subexons[k].start - relaxedWidth < segments[i].a && subexons[k].end + relaxedWidth > segments[i].b ) ) { if ( leftIdx == -1 ) leftIdx = k ; rightIdx = k ; ct.vector.Set( k ) ; } else { return false ; } } if ( leftIdx == -1 ) return false ; // The cover contradict the boundary. if ( !( ( subexons[leftIdx].leftType == 0 || subexons[leftIdx].start <= segments[i].a ) && ( subexons[rightIdx].rightType == 0 || subexons[rightIdx].end >= segments[i].b ) ) ) return false ; // The intron must exists in the subexon graph. if ( i > 0 ) { for ( j = 0 ; j < subexons[ ct.last ].nextCnt ; ++j ) if ( subexons[ct.last].next[j] == leftIdx ) break ; if ( j >= subexons[ ct.last ].nextCnt ) return false ; } // The subexons must be consecutive for ( j = leftIdx + 1 ; j <= rightIdx ; ++j ) if ( subexons[j].start > subexons[j - 1].end + 1 ) return false ; if ( i == 0 ) ct.first = leftIdx ; ct.last = rightIdx ; } return true ; } void Constraints::CoalesceSameConstraints() { int i, k ; int size = constraints.size() ; for ( i = 0 ; i < size ; ++i ) { constraints[i].info = i ; //printf( "constraints %d: %d %d %d\n", i, constraints[i].vector.Test( 0 ), constraints[i].vector.Test(1), constraints[i].support ) ; } std::vector<int> newIdx ; newIdx.resize( size, 0 ) ; // Update the constraints. if ( size > 0 ) { std::sort( constraints.begin(), constraints.end(), CompSortConstraints ) ; k = 0 ; newIdx[ constraints[0].info ] = 0 ; for ( i = 1 ; i < size ; ++i ) { if ( constraints[k].vector.IsEqual( constraints[i].vector ) ) { constraints[k].weight += constraints[i].weight ; constraints[k].support += constraints[i].support ; constraints[k].uniqSupport += constraints[i].uniqSupport ; constraints[k].maxReadLen = ( constraints[k].maxReadLen > constraints[i].maxReadLen ) ? constraints[k].maxReadLen : constraints[i].maxReadLen ; constraints[i].vector.Release() ; } else { ++k ; if ( k != i ) constraints[k] = constraints[i] ; } newIdx[ constraints[i].info ] = k ; } constraints.resize( k + 1 ) ; } // Update the mate pairs. size = matePairs.size() ; if ( size > 0 ) { for ( i = 0 ; i < size ; ++i ) { //printf( "%d %d: %d => %d | %d =>%d\n", i, newIdx.size(), matePairs[i].i, newIdx[ matePairs[i].i ], // matePairs[i].j, newIdx[ matePairs[i].j ] ) ; matePairs[i].i = newIdx[ matePairs[i].i ] ; matePairs[i].j = newIdx[ matePairs[i].j ] ; } std::sort( matePairs.begin(), matePairs.end(), CompSortMatePairs ) ; k = 0 ; for ( i = 1 ; i < size ; ++i ) { if ( matePairs[i].i == matePairs[k].i && matePairs[i].j == matePairs[k].j ) { matePairs[k].support += matePairs[i].support ; matePairs[k].uniqSupport += matePairs[i].uniqSupport ; } else { ++k ; matePairs[k] = matePairs[i] ; } } //printf( "%s: %d\n", __func__, matePairs[1].i) ; matePairs.resize( k + 1 ) ; } // Update the data structure for future mate pairs. mateReadIds.UpdateIdx( newIdx ) ; } void Constraints::ComputeNormAbund( struct _subexon *subexons ) { int i, j ; int ctSize = constraints.size() ; for ( i = 0 ; i < ctSize ; ++i ) { // spanned more than 2 subexon int readLen = constraints[i].maxReadLen ; if ( constraints[i].first + 1 < constraints[i].last ) { std::vector<int> subexonInd ; constraints[i].vector.GetOnesIndices( subexonInd ) ; int size = subexonInd.size() ; for ( j = 1 ; j < size - 1 ; ++j ) { int a = subexonInd[j] ; readLen -= ( subexons[a].end - subexons[a].start + 1 ) ; } } int effectiveLength ; if ( constraints[i].first == constraints[i].last ) { effectiveLength = ( subexons[ constraints[i].first ].end - readLen + 1 )- subexons[ constraints[i].first ].start + 1 ; if ( effectiveLength <= 0 ) // this happens in the 3',5'-end subexon, where we trimmed the length effectiveLength = ( subexons[ constraints[i].first ].end - subexons[ constraints[i].first ].start + 1 ) / 2 + 1 ; } else { int a = constraints[i].first ; int b = constraints[i].last ; int start, end ; // the range of the possible start sites of a read in subexons[a]. start = subexons[a].end + 1 - ( readLen - 1 ) ; if ( start < subexons[a].start ) start = subexons[a].start ; if ( subexons[b].end - subexons[b].start + 1 >= readLen - 1 || subexons[b].rightType == 0 ) end = subexons[a].end ; else { end = subexons[a].end + 1 - ( readLen - ( subexons[b].end - subexons[b].start + 1 ) ) ; } if ( end < start ) // when we trimmed the subexon. end = subexons[a].start ; effectiveLength = end - start + 1 ; } //printf( "%d: effectiveLength=%d support=%d\n", i, effectiveLength, constraints[i].support ) ; constraints[i].normAbund = (double)constraints[i].weight / (double)effectiveLength ; if ( ( subexons[ constraints[i].first ].leftType == 0 && subexons[ constraints[i].first ].end - subexons[ constraints[i].first ].start + 1 >= 8 * pAlignments->readLen ) || ( subexons[ constraints[i].last ].rightType == 0 && subexons[ constraints[i].last ].end - subexons[ constraints[i].last ].start + 1 >= 8 * pAlignments->readLen ) ) // some random elongation of the sequence might make unnecessary long effective length. { constraints[i].normAbund *= 2 ; } constraints[i].abundance = constraints[i].normAbund ; } ctSize = matePairs.size() ; for ( i = 0 ; i < ctSize ; ++i ) { double a = constraints[ matePairs[i].i ].normAbund ; double b = constraints[ matePairs[i].j ].normAbund ; matePairs[i].normAbund = a < b ? a : b ; if ( matePairs[i].i != matePairs[i].j ) { if ( subexons[ constraints[ matePairs[i].i ].first ].leftType == 0 && constraints[ matePairs[i].i ].first == constraints[ matePairs[i].i ].last && a < b ) { matePairs[i].normAbund = b ; } else if ( subexons[ constraints[ matePairs[i].j ].last ].rightType == 0 && constraints[ matePairs[i].j ].first == constraints[ matePairs[i].j ].last && a > b ) { matePairs[i].normAbund = a ; } } //matePairs[i].normAbund = sqrt( a * b ) ; matePairs[i].abundance = matePairs[i].normAbund ; } } int Constraints::BuildConstraints( struct _subexon *subexons, int seCnt, int start, int end ) { int i ; int tag = 0 ; int coalesceThreshold = 16384 ; Alignments &alignments = *pAlignments ; // Release the memory from previous gene. int size = constraints.size() ; if ( size > 0 ) { for ( i = 0 ; i < size ; ++i ) constraints[i].vector.Release() ; std::vector<struct _constraint>().swap( constraints ) ; } std::vector<struct _matePairConstraint>().swap( matePairs ) ; mateReadIds.Clear() ; // Start to build the constraints. bool callNext = false ; // the last used alignment if ( alignments.IsAtBegin() ) callNext = true ; while ( !alignments.IsAtEnd() ) { if ( callNext ) { if ( !alignments.Next() ) break ; } else callNext = true ; if ( alignments.GetChromId() < subexons[0].chrId ) continue ; else if ( alignments.GetChromId() > subexons[0].chrId ) break ; // locate the first subexon in this region that overlapps with current alignment. for ( ; tag < seCnt && subexons[tag].end < alignments.segments[0].a ; ++tag ) ; if ( tag >= seCnt ) break ; if ( alignments.segments[ alignments.segCnt - 1 ].b < subexons[tag].start ) continue ; int uniqSupport = 0 ; if ( usePrimaryAsUnique ) uniqSupport = alignments.IsPrimary() ? 1 : 0 ; else uniqSupport = alignments.IsUnique() ? 1 : 0 ; struct _constraint ct ; ct.vector.Init( seCnt ) ; //printf( "%s %d: %lld-%lld | %d-%d\n", __func__, alignments.segCnt, alignments.segments[0].a, alignments.segments[0].b, subexons[tag].start, subexons[tag].end ) ; ct.weight = 1.0 / alignments.GetNumberOfHits() ; if ( alignments.IsGCRich() ) ct.weight *= 10 ; ct.normAbund = 0 ; ct.support = 1 ; ct.uniqSupport = uniqSupport ; ct.maxReadLen = alignments.GetRefCoverLength() ; if ( alignments.IsPrimary() && ConvertAlignmentToBitTable( alignments.segments, alignments.segCnt, subexons, seCnt, tag, ct ) ) { //printf( "%s ", alignments.GetReadId() ) ; //ct.vector.Print() ; // If the alignment has clipped end or tail. We only keep those clipped in the 3'/5'-end bool validClip = true ; if ( alignments.HasClipHead() ) { if ( ( ct.first < seCnt - 1 && subexons[ct.first].end + 1 == subexons[ct.first + 1].start ) || subexons[ct.first].prevCnt > 0 || alignments.segments[0].b - alignments.segments[0].a + 1 <= alignments.GetRefCoverLength() / 3.0 ) validClip = false ; } if ( alignments.HasClipTail() ) { int tmp = alignments.segCnt - 1 ; if ( ( ct.last > 0 && subexons[ct.last].start - 1 == subexons[ct.last - 1].end ) || subexons[ct.last].nextCnt > 0 || alignments.segments[tmp].b - alignments.segments[tmp].a + 1 <= alignments.GetRefCoverLength() / 3.0 ) validClip = false ; } if ( validClip ) { constraints.push_back( ct ) ; // if we just coalesced but the list size does not decrease, this will force capacity increase. //if ( !strcmp( alignments.GetReadId(), "ERR188021.8489052" ) ) // ct.vector.Print() ; // Add the mate-pair information. int mateChrId ; int64_t matePos ; alignments.GetMatePosition( mateChrId, matePos ) ; if ( alignments.GetChromId() == mateChrId ) { if ( matePos < alignments.segments[0].a ) { int mateIdx = mateReadIds.Query( alignments.GetReadId(), alignments.segments[0].a ) ; if ( mateIdx != -1 ) { struct _matePairConstraint nm ; nm.i = mateIdx ; nm.j = constraints.size() - 1 ; nm.abundance = 0 ; nm.support = 1 ; nm.uniqSupport = uniqSupport ; nm.effectiveCount = 2 ; matePairs.push_back( nm ) ; } } else if ( matePos > alignments.segments[0].a ) { mateReadIds.Insert( alignments.GetReadId(), alignments.segments[0].a, constraints.size() - 1, matePos ) ; } else // two mates have the same coordinate. { if ( alignments.IsFirstMate() ) { struct _matePairConstraint nm ; nm.i = constraints.size() - 1 ; nm.j = constraints.size() - 1 ; nm.abundance = 0 ; nm.support = 1 ; nm.uniqSupport = uniqSupport ; nm.effectiveCount = 2 ; matePairs.push_back( nm ) ; } } } } else ct.vector.Release() ; // Coalesce if necessary. size = constraints.size() ; if ( (int)size > coalesceThreshold && size == (int)constraints.capacity() ) { //printf( "start coalescing. %d\n", constraints.capacity() ) ; CoalesceSameConstraints() ; // Not coalesce enough if ( constraints.size() >= constraints.capacity() / 2 ) { coalesceThreshold *= 2 ; } } } else { //printf( "not compatible\n" ) ; ct.vector.Release() ; } } //printf( "start coalescing. %d %d\n", constraints.size(), matePairs.size() ) ; CoalesceSameConstraints() ; //printf( "after coalescing. %d %d\n", constraints.size(), matePairs.size() ) ; //for ( i = 0 ; i < matePairs.size() ; ++i ) // printf( "matePair: %d %d %d\n", matePairs[i].i, matePairs[i].j, matePairs[i].support ) ; // single-end data set //if ( matePairs.size() == 0 ) if ( alignments.fragStdev == 0 ) { int size = constraints.size() ; matePairs.clear() ; for ( i = 0 ; i < size ; ++i ) { struct _matePairConstraint nm ; nm.i = i ; nm.j = i ; nm.abundance = 0 ; nm.support = constraints[i].support ; nm.uniqSupport = constraints[i].uniqSupport ; nm.effectiveCount = 1 ; matePairs.push_back( nm ) ; } } ComputeNormAbund( subexons ) ; /*for ( i = 0 ; i < constraints.size() ; ++i ) { printf( "constraints %d: %lf %d %d %d ", i, constraints[i].normAbund, constraints[i].first, constraints[i].last, constraints[i].support ) ; constraints[i].vector.Print() ; } for ( i = 0 ; i < matePairs.size() ; ++i ) { printf( "mates %d: %lf %d %d %d %d\n", i, matePairs[i].normAbund, matePairs[i].i, matePairs[i].j, matePairs[i].support, matePairs[i].uniqSupport ) ; }*/ return 0 ; }