Mercurial > repos > malex > secimtools
comparison modulated_modularity_clustering.xml @ 1:2e7d47c0b027 draft
"planemo upload for repository https://malex@toolshed.g2.bx.psu.edu/repos/malex/secimtools"
author | malex |
---|---|
date | Mon, 08 Mar 2021 22:04:06 +0000 |
parents | |
children | caba07f41453 |
comparison
equal
deleted
inserted
replaced
0:b54326490b4d | 1:2e7d47c0b027 |
---|---|
1 <tool id="secimtools_modulated_modularity_clustering" name="Modulated Modularity Clustering (MMC)" version="@WRAPPER_VERSION@"> | |
2 <description>with visual summaries.</description> | |
3 <macros> | |
4 <import>macros.xml</import> | |
5 </macros> | |
6 <expand macro="requirements" /> | |
7 <command detect_errors="exit_code"><![CDATA[ | |
8 modulated_modularity_clustering.py | |
9 --input $input | |
10 --design $design | |
11 --ID $uniqID | |
12 --out $output | |
13 --figure $figure | |
14 --sigmaLow $sigmaLow | |
15 --sigmaHigh $sigmaHigh | |
16 --sigmaNum $sigmaNum | |
17 --correlation $corr | |
18 ]]></command> | |
19 <inputs> | |
20 <param name="input" type="data" format="tabular" label="Wide Dataset" help="Input your tab-separated wide format dataset. If not tab separated see TIP below." /> | |
21 <param name="design" type="data" format="tabular" label="Design Dataset" help="Input your design file (tab-separated). Note you need a 'sampleID' column. If not tab separated see TIP below."/> | |
22 <param name="uniqID" type="text" size="30" label="Unique Feature ID" help="Name of the column in your wide dataset that has unique identifiers.." /> | |
23 <param name="sigmaLow" type="float" size="6" value="0.05" label="Lower sigma bound" help="Default: 0.05." /> | |
24 <param name="sigmaHigh" type="float" size="6" value="0.50" label="Upper sigma bound" help="Default: 0.50." /> | |
25 <param name="sigmaNum" type="float" size="6" value="451" label="Number of Sigma values" help="Number of values of sigma to search. Default: 451." /> | |
26 <param name="corr" type="select" value="pearson" label="Correlation method" help="Select correlation method for preliminary correlation before clustering. Default: Pearson." > | |
27 <option value="pearson" selected="true">Pearson</option> | |
28 <option value="kendall" selected="true">Kendall</option> | |
29 <option value="spearman" selected="true">Spearman</option> | |
30 </param> | |
31 </inputs> | |
32 <outputs> | |
33 <data format="tabular" name="output" label="${tool.name} on ${on_string}: Values"/> | |
34 <data format="pdf" name="figure" label="${tool.name} on ${on_string}: Heatmaps"/> | |
35 </outputs> | |
36 <tests> | |
37 <test> | |
38 <param name="input" value="ST000006_data.tsv"/> | |
39 <param name="design" value="ST000006_design.tsv"/> | |
40 <param name="uniqID" value="Retention_Index" /> | |
41 <param name="corr" value="pearson" /> | |
42 <output name="output" file="ST000006_modulated_modularity_clustering_out.tsv" compare="sim_size" delta="10000"/> | |
43 <output name="figure" file="ST000006_modulated_modularity_clustering_figure.pdf" compare="sim_size" delta="10000" /> | |
44 </test> | |
45 </tests> | |
46 <help><![CDATA[ | |
47 | |
48 @TIP_AND_WARNING@ | |
49 | |
50 **Tool Description** | |
51 | |
52 Modulated Modularity Clustering method (MMC) was designed to detect latent structure in data using weighted graphs. | |
53 The method searches for optimal community structure and detects the magnitude of pairwise relationships. | |
54 The optimal number of clusters and the optimal cluster size are selected by the method during the analysis. | |
55 | |
56 The initial boundaries (lower and upper) for sigma as well as the number of points in the search grid (number of sigma values) are specified initially by the user. | |
57 The boundaries are extended automatically by the algorithm if the values are close to the boundary. The correlation type (Pearson, Kendall or Spearman) can be specified. | |
58 | |
59 More details about the method can be found in: | |
60 | |
61 Stone, E. A., and Ayroles, J. F. (2009). Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genet, 5(5), e1000479. | |
62 | |
63 | |
64 -------------------------------------------------------------------------------- | |
65 | |
66 **Input** | |
67 | |
68 - Two input datasets are required. | |
69 | |
70 @WIDE@ | |
71 | |
72 **NOTE:** The sample IDs must match the sample IDs in the Design File (below). Extra columns will automatically be ignored. | |
73 | |
74 @METADATA@ | |
75 | |
76 @UNIQID@ | |
77 | |
78 **Lower sigma value** | |
79 | |
80 - Default: 0.05. | |
81 | |
82 **Upper sigma value** | |
83 | |
84 - Default: 0.50. | |
85 | |
86 **Sigma values** | |
87 | |
88 - Number of values of sigma to search. Default: 451. Higher numbers increase the precision but decrease the performance time. | |
89 | |
90 **Correlation method** | |
91 | |
92 - Correlation method for preliminary correlation before clustering. Default = Pearson. | |
93 | |
94 -------------------------------------------------------------------------------- | |
95 | |
96 **Output** | |
97 | |
98 The tool produces four files: a single TSV file and three PDF files: | |
99 | |
100 (1) a TSV file containing the algorithm summaries and | |
101 (2) three PDF files containing (i) unsorted, (ii) sorted, and (iii) sorted and smoothed dependency heatmaps produced by the MMC algorithm respectively. | |
102 | |
103 | |
104 ]]></help> | |
105 <expand macro="citations"/> | |
106 </tool> |