Mercurial > repos > marie-tremblay-metatoul > nmr_preprocessing
comparison NmrPreprocessing_script.R @ 2:5e64657b4fe5 draft
planemo upload for repository https://github.com/workflow4metabolomics/nmr_preprocessing commit 22ca8782d7c4c0211e13c95b425d4f29f53f995e
| author | lecorguille |
|---|---|
| date | Wed, 28 Mar 2018 08:05:12 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:cbea5e9fd0b4 | 2:5e64657b4fe5 |
|---|---|
| 1 ## ========================== | |
| 2 # Internal functions | |
| 3 ## ========================== | |
| 4 | |
| 5 # beginTreatment | |
| 6 beginTreatment <- function(name, Signal_data = NULL, Signal_info = NULL, | |
| 7 force.real = FALSE) { | |
| 8 | |
| 9 cat("Begin", name, "\n") | |
| 10 | |
| 11 | |
| 12 # Formatting the Signal_data and Signal_info ----------------------- | |
| 13 | |
| 14 vec <- is.vector(Signal_data) | |
| 15 if (vec) { | |
| 16 Signal_data <- vec2mat(Signal_data) | |
| 17 } | |
| 18 if (is.vector(Signal_info)) { | |
| 19 Signal_info <- vec2mat(Signal_info) | |
| 20 } | |
| 21 if (!is.null(Signal_data)) { | |
| 22 if (!is.matrix(Signal_data)) { | |
| 23 stop("Signal_data is not a matrix.") | |
| 24 } | |
| 25 if (!is.complex(Signal_data) && !is.numeric(Signal_data)) { | |
| 26 stop("Signal_data contains non-numerical values.") | |
| 27 } | |
| 28 } | |
| 29 if (!is.null(Signal_info) && !is.matrix(Signal_info)) { | |
| 30 stop("Signal_info is not a matrix.") | |
| 31 } | |
| 32 | |
| 33 | |
| 34 Original_data <- Signal_data | |
| 35 | |
| 36 # Extract the real part of the spectrum --------------------------- | |
| 37 | |
| 38 if (force.real) { | |
| 39 if (is.complex(Signal_data)) { | |
| 40 Signal_data <- Re(Signal_data) | |
| 41 } else { | |
| 42 # The signal is numeric Im(Signal_data) is zero anyway so let's avoid | |
| 43 # using complex(real=...,imaginary=0) which would give a complex signal | |
| 44 # in endTreatment() | |
| 45 force.real <- FALSE | |
| 46 } | |
| 47 } | |
| 48 | |
| 49 | |
| 50 # Return the formatted data and metadata entries -------------------- | |
| 51 | |
| 52 return(list(start = proc.time(), vec = vec, force.real = force.real, | |
| 53 Original_data = Original_data, Signal_data = Signal_data, Signal_info = Signal_info)) | |
| 54 } | |
| 55 | |
| 56 # endTreatment | |
| 57 endTreatment <- function(name, begin_info, Signal_data) { | |
| 58 | |
| 59 # begin_info: object outputted from beginTreatment | |
| 60 | |
| 61 | |
| 62 # Formatting the entries and printing process time ----------------------- | |
| 63 end_time <- proc.time() # record it as soon as possible | |
| 64 start_time <- begin_info[["start"]] | |
| 65 delta_time <- end_time - start_time | |
| 66 delta <- delta_time[] | |
| 67 cat("End", name, "\n") | |
| 68 cat("It lasted", round(delta["user.self"], 3), "s user time,", round(delta["sys.self"],3), | |
| 69 "s system time and", round(delta["elapsed"], 3), "s elapsed time.\n") | |
| 70 | |
| 71 | |
| 72 if (begin_info[["force.real"]]) { | |
| 73 # The imaginary part is left untouched | |
| 74 i <- complex(real = 0, imaginary = 1) | |
| 75 Signal_data <- Signal_data + i * Im(begin_info[["Original_data"]]) | |
| 76 } | |
| 77 | |
| 78 if (begin_info[["vec"]]) { | |
| 79 Signal_data <- Signal_data[1, ] | |
| 80 } | |
| 81 | |
| 82 # Return the formatted data and metadata entries -------------------- | |
| 83 return(Signal_data) | |
| 84 } | |
| 85 | |
| 86 # checkArg | |
| 87 checkArg <- function(arg, checks, can.be.null=FALSE) { | |
| 88 check.list <- list(bool=c(is.logical, "a boolean"), | |
| 89 int =c(function(x){x%%1==0}, "an integer"), | |
| 90 num =c(is.numeric, "a numeric"), | |
| 91 str =c(is.character, "a string"), | |
| 92 pos =c(function(x){x>0}, "positive"), | |
| 93 pos0=c(function(x){x>=0}, "positive or zero"), | |
| 94 l1 =c(function(x){length(x)==1}, "of length 1") | |
| 95 ) | |
| 96 if (is.null(arg)) { | |
| 97 if (!can.be.null) { | |
| 98 stop(deparse(substitute(arg)), " is null.") | |
| 99 } | |
| 100 } else { | |
| 101 if (is.matrix(arg)) { | |
| 102 stop(deparse(substitute(arg)), " is not scalar.") | |
| 103 } | |
| 104 for (c in checks) { | |
| 105 if (!check.list[[c]][[1]](arg)) { | |
| 106 stop(deparse(substitute(arg)), " is not ", check.list[[c]][[2]], ".") | |
| 107 } | |
| 108 } | |
| 109 } | |
| 110 } | |
| 111 | |
| 112 # getArg | |
| 113 getArg <- function(arg, info, argname, can.be.absent=FALSE) { | |
| 114 if (is.null(arg)) { | |
| 115 start <- paste("impossible to get argument", argname, "it was not given directly and"); | |
| 116 if (!is.matrix(info)) { | |
| 117 stop(paste(start, "the info matrix was not given")) | |
| 118 } | |
| 119 if (!(argname %in% colnames(info))) { | |
| 120 if (can.be.absent) { | |
| 121 return(NULL) | |
| 122 } else { | |
| 123 stop(paste(start, "is not in the info matrix")) | |
| 124 } | |
| 125 } | |
| 126 if (nrow(info) < 1) { | |
| 127 stop(paste(start, "the info matrix has no row")) | |
| 128 } | |
| 129 arg <- info[1,argname] | |
| 130 if (is.na(arg)) { | |
| 131 stop(paste(start, "it is NA in the info matrix")) | |
| 132 } | |
| 133 } | |
| 134 return(arg) | |
| 135 } | |
| 136 | |
| 137 # binarySearch | |
| 138 binarySearch <- function(a, target, lower = TRUE) { | |
| 139 # search the index i in a such that a[i] == target | |
| 140 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target | |
| 141 # if !lower, it seraches the closer a[i] such that a[i] > target | |
| 142 # a should be monotone but can be increasing or decreasing | |
| 143 | |
| 144 # if a is increasing INVARIANT: a[amin] < target < a[amax] | |
| 145 N <- length(a) | |
| 146 if ((a[N] - target) * (a[N] - a[1]) <= 0) { | |
| 147 return(N) | |
| 148 } | |
| 149 if ((a[1] - target) * (a[N] - a[1]) >= 0) { | |
| 150 return(1) | |
| 151 } | |
| 152 amin <- 1 | |
| 153 amax <- N | |
| 154 while (amin + 1 < amax) { | |
| 155 amid <- floor((amin + amax)/2) | |
| 156 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) { | |
| 157 amin <- amid | |
| 158 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) { | |
| 159 amax <- amid | |
| 160 } else { | |
| 161 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] == | |
| 162 # target | |
| 163 return(amid) | |
| 164 } | |
| 165 } | |
| 166 if (xor(lower, a[amin] > a[amax])) { | |
| 167 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) | |
| 168 # If increasing and we want the lower, we take amin | |
| 169 # If decreasing and we want the bigger, we take amin too | |
| 170 return(amin) | |
| 171 } else { | |
| 172 return(amax) | |
| 173 } | |
| 174 } | |
| 175 | |
| 176 # Interpol | |
| 177 Interpol <- function(t, y) { | |
| 178 # y: sample | |
| 179 # t : warping function | |
| 180 | |
| 181 m <- length(y) | |
| 182 # t <= m-1 | |
| 183 # because if t > m-1, y[ti+1] will be NA when we compute g | |
| 184 valid <- 1 <= t & t <= m-1 # FIXME it was '<' in Bubble v2 | |
| 185 s <- (1:m)[valid] | |
| 186 ti <- floor(t[s]) | |
| 187 tr <- t[s] - ti | |
| 188 g <- y[ti + 1] - y[ti] | |
| 189 f <- y[ti] + tr * g | |
| 190 list(f=f, s=s, g=g) | |
| 191 } | |
| 192 | |
| 193 # vec2mat | |
| 194 vec2mat <- function(vec) { | |
| 195 return(matrix(vec, nrow = 1, dimnames = list(c(1), names(vec)))) | |
| 196 | |
| 197 } | |
| 198 | |
| 199 # binarySearch | |
| 200 binarySearch <- function(a, target, lower = TRUE) { | |
| 201 # search the index i in a such that a[i] == target | |
| 202 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target | |
| 203 # if !lower, it seraches the closer a[i] such that a[i] > target | |
| 204 # a should be monotone but can be increasing or decreasing | |
| 205 | |
| 206 # if a is increasing INVARIANT: a[amin] < target < a[amax] | |
| 207 N <- length(a) | |
| 208 if ((a[N] - target) * (a[N] - a[1]) <= 0) { | |
| 209 return(N) | |
| 210 } | |
| 211 if ((a[1] - target) * (a[N] - a[1]) >= 0) { | |
| 212 return(1) | |
| 213 } | |
| 214 amin <- 1 | |
| 215 amax <- N | |
| 216 while (amin + 1 < amax) { | |
| 217 amid <- floor((amin + amax)/2) | |
| 218 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) { | |
| 219 amin <- amid | |
| 220 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) { | |
| 221 amax <- amid | |
| 222 } else { | |
| 223 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] == | |
| 224 # target | |
| 225 return(amid) | |
| 226 } | |
| 227 } | |
| 228 if (xor(lower, a[amin] > a[amax])) { | |
| 229 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) | |
| 230 # If increasing and we want the lower, we take amin | |
| 231 # If decreasing and we want the bigger, we take amin too | |
| 232 return(amin) | |
| 233 } else { | |
| 234 return(amax) | |
| 235 } | |
| 236 } | |
| 237 | |
| 238 | |
| 239 # indexInterval | |
| 240 indexInterval <- function (a, from, to, inclusive=TRUE) { | |
| 241 # If inclusive and from <= to, we need to take the lower | |
| 242 # If not inclusive and from > to, we need to take the lower too | |
| 243 lowerFrom <- xor(inclusive, from > to) | |
| 244 fromIndex <- binarySearch(a, from, lowerFrom) | |
| 245 toIndex <- binarySearch(a, to, !lowerFrom) | |
| 246 return(fromIndex:toIndex) | |
| 247 } | |
| 248 | |
| 249 | |
| 250 | |
| 251 ## ========================== | |
| 252 # GroupDelayCorrection | |
| 253 ## ========================== | |
| 254 GroupDelayCorrection <- function(Fid_data, Fid_info = NULL, group_delay = NULL) { | |
| 255 | |
| 256 | |
| 257 # Data initialisation and checks ---------------------------------------------- | |
| 258 | |
| 259 begin_info <- beginTreatment("GroupDelayCorrection", Fid_data, Fid_info) | |
| 260 Fid_data <- begin_info[["Signal_data"]] | |
| 261 dimension_names <- dimnames(Fid_data) | |
| 262 Fid_info <- begin_info[["Signal_info"]] | |
| 263 checkArg(group_delay, c("num", "pos0"), can.be.null = TRUE) | |
| 264 # if Fid_info and group_delay are NULL, getArg will generate an error | |
| 265 | |
| 266 group_delay <- getArg(group_delay, Fid_info, "GRPDLY", can.be.absent = TRUE) | |
| 267 | |
| 268 if (is.null(group_delay)) { | |
| 269 | |
| 270 # See DetermineBrukerDigitalFilter.m in matNMR MATLAB library | |
| 271 group_delay_matrix <- matrix(c(44.75, 46, 46.311, 33.5, 36.5, 36.53, 66.625, | |
| 272 48, 47.87, 59.0833, 50.1667, 50.229, 68.5625, 53.25, 53.289, 60.375, | |
| 273 69.5, 69.551, 69.5313, 72.25, 71.6, 61.0208, 70.1667, 70.184, 70.0156, | |
| 274 72.75, 72.138, 61.3438, 70.5, 70.528, 70.2578, 73, 72.348, 61.5052, 70.6667, | |
| 275 70.7, 70.3789, 72.5, 72.524, 61.5859, 71.3333, NA, 70.4395, 72.25, NA, | |
| 276 61.6263, 71.6667, NA, 70.4697, 72.125, NA, 61.6465, 71.8333, NA, 70.4849, | |
| 277 72.0625, NA, 61.6566, 71.9167, NA, 70.4924, 72.0313, NA), nrow = 21, | |
| 278 ncol = 3, byrow = TRUE, dimnames = list(c(2, 3, 4, 6, 8, 12, 16, 24, | |
| 279 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048), | |
| 280 c(10, 11, 12))) | |
| 281 decim <- Fid_info[1, "DECIM"] | |
| 282 dspfvs <- Fid_info[1, "DSPFVS"] | |
| 283 if (!(toString(decim) %in% rownames(group_delay_matrix))) { | |
| 284 stop(paste("Invalid DECIM", decim, "it should be one of", rownames(group_delay_matrix))) | |
| 285 } | |
| 286 if (!(toString(dspfvs) %in% colnames(group_delay_matrix))) { | |
| 287 stop(paste("Invalid DSPFVS", dspfvs, "it should be one of", colnames(group_delay_matrix))) | |
| 288 } | |
| 289 group_delay <- group_delay_matrix[toString(decim), toString(dspfvs)] | |
| 290 if (is.na(group_delay)) { | |
| 291 stop(paste("Invalid DECIM", decim, "for DSPFVS", dspfvs)) | |
| 292 } | |
| 293 } | |
| 294 m <- ncol(Fid_data) | |
| 295 n <- nrow(Fid_data) | |
| 296 | |
| 297 # GroupDelayCorrection ---------------------------------------------- | |
| 298 | |
| 299 # We do the shifting in the Fourier domain because the shift can be non-integer. | |
| 300 # That way we automatically have the circular behaviour of the shift and the | |
| 301 # interpolation if it is non-integer. | |
| 302 | |
| 303 Spectrum <- t(stats::mvfft(t(Fid_data))) | |
| 304 | |
| 305 # Spectrum <- FourierTransform(Fid_data, Fid_info) | |
| 306 p <- ceiling(m/2) | |
| 307 new_index <- c((p + 1):m, 1:p) | |
| 308 Spectrum <- Spectrum[,new_index] | |
| 309 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n) | |
| 310 | |
| 311 Omega <- (0:(m - 1))/m | |
| 312 i <- complex(real = 0, imaginary = 1) | |
| 313 | |
| 314 if (n>1) { | |
| 315 Spectrum <- sweep(Spectrum, MARGIN = 2, exp(i * group_delay * 2 * pi * Omega), `*`) | |
| 316 Spectrum <- Spectrum[,new_index] | |
| 317 }else { | |
| 318 Spectrum <- Spectrum* exp(i * group_delay * 2 * pi * Omega) | |
| 319 Spectrum <- Spectrum[new_index] | |
| 320 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n) | |
| 321 } | |
| 322 | |
| 323 | |
| 324 Fid_data <- t(stats::mvfft(t(Spectrum), inverse = TRUE))/m | |
| 325 colnames(Fid_data) <- dimension_names[[2]] | |
| 326 rownames(Fid_data) <- dimension_names[[1]] | |
| 327 | |
| 328 # Data finalisation ---------------------------------------------- | |
| 329 | |
| 330 return(endTreatment("GroupDelayCorrection", begin_info, Fid_data)) | |
| 331 } | |
| 332 | |
| 333 ## ========================== | |
| 334 # SolventSuppression | |
| 335 ## ========================== | |
| 336 SolventSuppression <- function(Fid_data, lambda.ss = 1e+06, ptw.ss = TRUE, | |
| 337 plotSolvent = F, returnSolvent = F) { | |
| 338 | |
| 339 # Data initialisation and checks ---------------------------------------------- | |
| 340 | |
| 341 begin_info <- beginTreatment("SolventSuppression", Fid_data) | |
| 342 Fid_data <- begin_info[["Signal_data"]] | |
| 343 checkArg(ptw.ss, c("bool")) | |
| 344 checkArg(lambda.ss, c("num", "pos0")) | |
| 345 | |
| 346 | |
| 347 # difsm function definition for the smoother ----------------------------------- | |
| 348 | |
| 349 if (ptw.ss) { | |
| 350 # Use of the function in ptw that smoothes signals with a finite difference | |
| 351 # penalty of order 2 | |
| 352 difsm <- ptw::difsm | |
| 353 } else { | |
| 354 # Or manual implementation based on sparse matrices for large data series (cf. | |
| 355 # Eilers, 2003. 'A perfect smoother') | |
| 356 difsm <- function(y, d = 2, lambda) { | |
| 357 | |
| 358 m <- length(y) | |
| 359 # Sparse identity matrix m x m | |
| 360 E <- Matrix::Diagonal(m) | |
| 361 D <- Matrix::diff(E, differences = d) | |
| 362 A <- E + lambda.ss * Matrix::t(D) %*% D | |
| 363 # base::chol does not take into account that A is sparse and is extremely slow | |
| 364 C <- Matrix::chol(A) | |
| 365 x <- Matrix::solve(C, Matrix::solve(Matrix::t(C), y)) | |
| 366 return(as.numeric(x)) | |
| 367 } | |
| 368 } | |
| 369 | |
| 370 # Solvent Suppression ---------------------------------------------- | |
| 371 | |
| 372 n <- dim(Fid_data)[1] | |
| 373 if (returnSolvent) { | |
| 374 SolventRe <- Fid_data | |
| 375 SolventIm <- Fid_data | |
| 376 } | |
| 377 for (i in 1:n) { | |
| 378 FidRe <- Re(Fid_data[i, ]) | |
| 379 FidIm <- Im(Fid_data[i, ]) | |
| 380 solventRe <- difsm(y = FidRe, lambda = lambda.ss) | |
| 381 solventIm <- difsm(y = FidIm, lambda = lambda.ss) | |
| 382 | |
| 383 if (plotSolvent) { | |
| 384 m <- length(FidRe) | |
| 385 graphics::plot(1:m, FidRe, type = "l", col = "red") | |
| 386 graphics::lines(1:m, solventRe, type = "l", col = "blue") | |
| 387 graphics::plot(1:m, FidIm, type = "l", col = "red") | |
| 388 graphics::lines(1:m, solventIm, type = "l", col = "blue") | |
| 389 } | |
| 390 FidRe <- FidRe - solventRe | |
| 391 FidIm <- FidIm - solventIm | |
| 392 Fid_data[i, ] <- complex(real = FidRe, imaginary = FidIm) | |
| 393 if (returnSolvent) { | |
| 394 SolventRe[i, ] <- solventRe | |
| 395 SolventIm[i, ] <- solventIm | |
| 396 } | |
| 397 } | |
| 398 | |
| 399 | |
| 400 # Data finalisation ---------------------------------------------- | |
| 401 | |
| 402 Fid_data <- endTreatment("SolventSuppression", begin_info, Fid_data) | |
| 403 if (returnSolvent) { | |
| 404 return(list(Fid_data = Fid_data, SolventRe = SolventRe, SolventIm = SolventIm)) | |
| 405 } else { | |
| 406 return(Fid_data) | |
| 407 } | |
| 408 } | |
| 409 | |
| 410 | |
| 411 ## ========================== | |
| 412 # Apodization | |
| 413 # ============================= | |
| 414 Apodization <- function(Fid_data, Fid_info = NULL, DT = NULL, | |
| 415 type.apod = c("exp","cos2", "blockexp", "blockcos2", | |
| 416 "gauss", "hanning", "hamming"), phase = 0, rectRatio = 1/2, | |
| 417 gaussLB = 1, expLB = 1, plotWindow = F, returnFactor = F) { | |
| 418 | |
| 419 # Data initialisation and checks ---------------------------------------------- | |
| 420 begin_info <- beginTreatment("Apodization", Fid_data, Fid_info) | |
| 421 Fid_data <- begin_info[["Signal_data"]] | |
| 422 Fid_info <- begin_info[["Signal_info"]] | |
| 423 # Data check | |
| 424 type.apod <- match.arg(type.apod) | |
| 425 checkArg(DT, c("num", "pos"), can.be.null = TRUE) | |
| 426 checkArg(phase, c("num")) | |
| 427 | |
| 428 # Apodization ---------------------------------------------- | |
| 429 DT <- getArg(DT, Fid_info, "DT") # Dwell Time | |
| 430 m <- ncol(Fid_data) | |
| 431 t <- (1:m) * DT # Time | |
| 432 rectSize <- ceiling(rectRatio * m) | |
| 433 gaussLB <- (gaussLB/(sqrt(8 * log(2)))) | |
| 434 # Define the types of apodization: | |
| 435 switch(type.apod, exp = { | |
| 436 # exponential | |
| 437 Factor <- exp(-expLB * t) | |
| 438 }, cos2 = { | |
| 439 # cos^2 | |
| 440 c <- cos((1:m) * pi/(2 * m) - phase * pi/2) | |
| 441 Factor <- c * c | |
| 442 }, blockexp = { | |
| 443 # block and exponential | |
| 444 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize)) | |
| 445 # | rectSize | 1 ___________ | \ 0 \____ | |
| 446 Factor[(rectSize + 1):m] <- exp(-expLB * t[1:(m - rectSize)]) | |
| 447 }, blockcos2 = { | |
| 448 # block and cos^2 | |
| 449 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize)) | |
| 450 c <- cos((1:(m - rectSize)) * pi/(2 * (m - rectSize))) | |
| 451 Factor[(rectSize + 1):m] <- c * c | |
| 452 }, gauss = { | |
| 453 # gaussian | |
| 454 Factor <- exp(-(gaussLB * t)^2/2) | |
| 455 Factor <- Factor/max(Factor) | |
| 456 }, hanning = { | |
| 457 # Hanning | |
| 458 Factor <- 0.5 + 0.5 * cos((1:m) * pi/m - phase * pi) | |
| 459 }, hamming = { | |
| 460 # Hamming | |
| 461 Factor <- 0.54 + 0.46 * cos((1:m) * pi/m - phase * pi) | |
| 462 }) | |
| 463 if (plotWindow) { | |
| 464 graphics::plot(1:m, Factor, "l") | |
| 465 # dev.off() # device independent, it is the responsability of the | |
| 466 # caller to do it | |
| 467 } | |
| 468 # Apply the apodization factor on the spectra | |
| 469 Fid_data <- sweep(Fid_data, MARGIN = 2, Factor, `*`) | |
| 470 | |
| 471 # Data finalisation ---------------------------------------------- | |
| 472 Fid_data <- endTreatment("Apodization", begin_info, Fid_data) | |
| 473 if (returnFactor) { | |
| 474 return(list(Fid_data = Fid_data, Factor = Factor)) | |
| 475 } else { | |
| 476 return(Fid_data) | |
| 477 } | |
| 478 } | |
| 479 | |
| 480 | |
| 481 ## ==================================================== | |
| 482 # FourierTransform | |
| 483 ## ==================================================== | |
| 484 | |
| 485 | |
| 486 # fftshift1D2D | |
| 487 fftshift1D2D <- function(x) { | |
| 488 vec <- F | |
| 489 if (is.vector(x)) { | |
| 490 x <- vec2mat(x) | |
| 491 vec <- T | |
| 492 } | |
| 493 m <- dim(x)[2] | |
| 494 p <- ceiling(m/2) | |
| 495 new_index <- c((p + 1):m, 1:p) | |
| 496 y <- x[, new_index, drop = vec] | |
| 497 } | |
| 498 | |
| 499 # FourierTransform | |
| 500 FourierTransform <- function(Fid_data, Fid_info = NULL, SW_h = NULL, SW = NULL, O1 = NULL, reverse.axis = TRUE) { | |
| 501 | |
| 502 # Data initialisation and checks ---------------------------------------------- | |
| 503 begin_info <- beginTreatment("FourierTransform", Fid_data, Fid_info) | |
| 504 Fid_data <- begin_info[["Signal_data"]] | |
| 505 Fid_info <- begin_info[["Signal_info"]] | |
| 506 | |
| 507 m <- ncol(Fid_data) | |
| 508 n <- nrow(Fid_data) | |
| 509 | |
| 510 if (is.null(SW_h)) { | |
| 511 SW_h <- getArg(SW_h, Fid_info, "SW_h") | |
| 512 } | |
| 513 | |
| 514 if (is.null(SW)) { | |
| 515 SW <- getArg(SW, Fid_info, "SW") # Sweep Width in ppm (semi frequency scale in ppm) | |
| 516 } | |
| 517 | |
| 518 | |
| 519 if (is.null(O1)) { | |
| 520 O1 <- getArg(O1, Fid_info, "O1") | |
| 521 } | |
| 522 | |
| 523 | |
| 524 checkArg(reverse.axis, c("bool")) | |
| 525 | |
| 526 # Fourier Transformation ---------------------------------------------- | |
| 527 # mvfft does the unnormalized fourier transform (see ?mvfft), so we need divide | |
| 528 # by m. It does not matter a lot in our case since the spectrum will be | |
| 529 # normalized. | |
| 530 | |
| 531 # FT | |
| 532 RawSpect_data <- fftshift1D2D(t(stats::mvfft(t(Fid_data)))) | |
| 533 # recover the frequencies values | |
| 534 f <- ((0:(m - 1)) - floor(m/2)) * Fid_info[1, "SW_h"]/(m-1) | |
| 535 | |
| 536 if(reverse.axis == TRUE) { | |
| 537 revind <- rev(1:m) | |
| 538 RawSpect_data <- RawSpect_data[,revind] # reverse the spectrum | |
| 539 } | |
| 540 | |
| 541 RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = m) | |
| 542 colnames(RawSpect_data) <- f | |
| 543 rownames(RawSpect_data) <- rownames(Fid_data) | |
| 544 | |
| 545 # PPM conversion ---------------------------------------------- | |
| 546 | |
| 547 # The Sweep Width has to be the same since the column names are the same | |
| 548 | |
| 549 ppmInterval <- SW/(m-1) | |
| 550 | |
| 551 O1index = round((m+1)/2+O1*(m - 1) / SW_h) | |
| 552 | |
| 553 end <- O1index - m | |
| 554 start <- O1index -1 | |
| 555 ppmScale <- (start:end) * ppmInterval | |
| 556 RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = -(end - start) + 1, dimnames = | |
| 557 list(rownames(RawSpect_data), ppmScale)) | |
| 558 | |
| 559 | |
| 560 # Data finalisation ---------------------------------------------- | |
| 561 return(endTreatment("FourierTransform", begin_info, RawSpect_data)) | |
| 562 } | |
| 563 | |
| 564 ## ==================================================== | |
| 565 # InternalReferencing | |
| 566 ## ==================================================== | |
| 567 | |
| 568 InternalReferencing <- function(Spectrum_data, Fid_info, method = c("max", "thres"), | |
| 569 range = c("nearvalue", "all", "window"), ppm.value = 0, | |
| 570 direction = "left", shiftHandling = c("zerofilling", "cut", | |
| 571 "NAfilling", "circular"), c = 2, pc = 0.02, fromto.RC = NULL, | |
| 572 ppm.ir = TRUE, rowindex_graph = NULL) { | |
| 573 | |
| 574 | |
| 575 | |
| 576 # Data initialisation and checks ---------------------------------------------- | |
| 577 | |
| 578 begin_info <- beginTreatment("InternalReferencing", Spectrum_data, Fid_info) | |
| 579 Spectrum_data <- begin_info[["Signal_data"]] | |
| 580 Fid_info <- begin_info[["Signal_info"]] | |
| 581 | |
| 582 | |
| 583 # Check input arguments | |
| 584 range <- match.arg(range) | |
| 585 shiftHandling <- match.arg(shiftHandling) | |
| 586 method <- match.arg(method) | |
| 587 plots <- NULL | |
| 588 | |
| 589 | |
| 590 checkArg(ppm.ir, c("bool")) | |
| 591 checkArg(unlist(fromto.RC), c("num"), can.be.null = TRUE) | |
| 592 checkArg(pc, c("num")) | |
| 593 checkArg(ppm.value, c("num")) | |
| 594 checkArg(rowindex_graph, "num", can.be.null = TRUE) | |
| 595 | |
| 596 # fromto.RC | |
| 597 if (!is.null(fromto.RC)) { | |
| 598 diff <- diff(unlist(fromto.RC))[1:length(diff(unlist(fromto.RC)))%%2 !=0] | |
| 599 for (i in 1:length(diff)) { | |
| 600 if (diff[i] >= 0) { | |
| 601 fromto <- c(fromto.RC[[i]][2], fromto.RC[[i]][1]) | |
| 602 fromto.RC[[i]] <- fromto | |
| 603 } | |
| 604 } | |
| 605 } | |
| 606 | |
| 607 | |
| 608 # findTMSPpeak function ---------------------------------------------- | |
| 609 findTMSPpeak <- function(ft, c = 2, direction = "left") { | |
| 610 ft <- Re(ft) # extraction de la partie réelle | |
| 611 N <- length(ft) | |
| 612 if (direction == "left") { | |
| 613 newindex <- rev(1:N) | |
| 614 ft <- rev(ft) | |
| 615 } | |
| 616 thres <- 99999 | |
| 617 i <- 1000 # Start at point 1000 to find the peak | |
| 618 vect <- ft[1:i] | |
| 619 | |
| 620 while (vect[i] <= (c * thres)) { | |
| 621 cumsd <- stats::sd(vect) | |
| 622 cummean <- mean(vect) | |
| 623 thres <- cummean + 3 * cumsd | |
| 624 i <- i + 1 | |
| 625 vect <- ft[1:i] | |
| 626 } | |
| 627 if (direction == "left") { | |
| 628 v <- newindex[i] | |
| 629 } else {v <- i} | |
| 630 | |
| 631 if (is.na(v)) { | |
| 632 warning("No peak found, need to lower the threshold.") | |
| 633 return(NA) | |
| 634 } else { | |
| 635 # recherche dans les 1% de points suivants du max trouve pour etre au sommet du | |
| 636 # pic | |
| 637 d <- which.max(ft[v:(v + N * 0.01)]) | |
| 638 new.peak <- v + d - 1 # nouveau pic du TMSP si d > 0 | |
| 639 | |
| 640 if (names(which.max(ft[v:(v + N * 0.01)])) != names(which.max(ft[v:(v + N * 0.03)]))) { | |
| 641 # recherche dans les 3% de points suivants du max trouve pour eviter un faux | |
| 642 # positif | |
| 643 warning("the TMSP peak might be located further away, increase the threshold to check.") | |
| 644 } | |
| 645 return(new.peak) | |
| 646 } | |
| 647 } | |
| 648 | |
| 649 | |
| 650 # Apply the method ('thres' or 'max') on spectra | |
| 651 # ---------------------------------------------- | |
| 652 | |
| 653 n <- nrow(Spectrum_data) | |
| 654 m <- ncol(Spectrum_data) | |
| 655 | |
| 656 # The Sweep Width has to be the same since the column names are the same | |
| 657 SW <- Fid_info[1, "SW"] # Sweep Width in ppm (semi frequency scale in ppm) | |
| 658 ppmInterval <- SW/(m-1) | |
| 659 | |
| 660 if (range == "all") { | |
| 661 Data <- Spectrum_data | |
| 662 } else { # range = "nearvalue" or "window" | |
| 663 | |
| 664 if (range == "nearvalue") { | |
| 665 fromto.RC <- list(c(-(SW * pc)/2 + ppm.value, (SW * pc)/2 + ppm.value)) # automatic fromto values in ppm | |
| 666 colindex <- as.numeric(colnames(Spectrum_data)) | |
| 667 } else { | |
| 668 if (ppm.ir == TRUE) { | |
| 669 colindex <- as.numeric(colnames(Spectrum_data)) | |
| 670 } else { | |
| 671 colindex <- 1:m | |
| 672 } | |
| 673 } | |
| 674 | |
| 675 | |
| 676 Int <- vector("list", length(fromto.RC)) | |
| 677 for (i in 1:length(fromto.RC)) { | |
| 678 Int[[i]] <- indexInterval(colindex, from = fromto.RC[[i]][1], | |
| 679 to = fromto.RC[[i]][2], inclusive = TRUE) | |
| 680 } | |
| 681 | |
| 682 vector <- rep(0, m) | |
| 683 vector[unlist(Int)] <- 1 | |
| 684 if (n > 1) { | |
| 685 Data <- sweep(Spectrum_data, MARGIN = 2, FUN = "*", vector) # Cropped_Spectrum | |
| 686 } else { | |
| 687 Data <- Spectrum_data * vector | |
| 688 } # Cropped_Spectrum | |
| 689 } | |
| 690 | |
| 691 | |
| 692 if (method == "thres") { | |
| 693 TMSPpeaks <- apply(Data, 1, findTMSPpeak, c = c, direction = direction) | |
| 694 } else { | |
| 695 TMSPpeaks <- apply(abs(Re(Data)), 1, which.max) | |
| 696 } | |
| 697 | |
| 698 # TMSPpeaks is an column index | |
| 699 maxpeak <- max(TMSPpeaks) | |
| 700 minpeak <- min(TMSPpeaks) | |
| 701 | |
| 702 | |
| 703 | |
| 704 # Shift spectra according to the TMSPpeaks found -------------------------------- | |
| 705 # Depends on the shiftHandling | |
| 706 | |
| 707 if (shiftHandling %in% c("zerofilling", "NAfilling", "cut")) { | |
| 708 fill <- NA | |
| 709 if (shiftHandling == "zerofilling") { | |
| 710 fill <- 0 | |
| 711 } | |
| 712 | |
| 713 start <- maxpeak - 1 | |
| 714 end <- minpeak - m | |
| 715 | |
| 716 ppmScale <- (start:end) * ppmInterval | |
| 717 | |
| 718 # check if ppm.value is in the ppmScale interval | |
| 719 if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) { | |
| 720 warning("ppm.value = ", ppm.value, " is not in the ppm interval [", | |
| 721 round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0") | |
| 722 ppm.value = 0 | |
| 723 } | |
| 724 | |
| 725 ppmScale <- ppmScale + ppm.value | |
| 726 | |
| 727 Spectrum_data_calib <- matrix(fill, nrow = n, ncol = -(end - start) + 1, | |
| 728 dimnames = list(rownames(Spectrum_data), ppmScale)) | |
| 729 for (i in 1:n) { | |
| 730 shift <- (1 - TMSPpeaks[i]) + start | |
| 731 Spectrum_data_calib[i, (1 + shift):(m + shift)] <- Spectrum_data[i, ] | |
| 732 } | |
| 733 | |
| 734 if (shiftHandling == "cut") { | |
| 735 Spectrum_data_calib = as.matrix(stats::na.omit(t(Spectrum_data_calib))) | |
| 736 Spectrum_data_calib = t(Spectrum_data_calib) | |
| 737 base::attr(Spectrum_data_calib, "na.action") <- NULL | |
| 738 } | |
| 739 | |
| 740 | |
| 741 } else { | |
| 742 # circular | |
| 743 start <- 1 - maxpeak | |
| 744 end <- m - maxpeak | |
| 745 | |
| 746 ppmScale <- (start:end) * ppmInterval | |
| 747 | |
| 748 # check if ppm.value in is the ppmScale interval | |
| 749 if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) { | |
| 750 warning("ppm.value = ", ppm.value, " is not in the ppm interval [", | |
| 751 round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0") | |
| 752 ppm.value = 0 | |
| 753 } | |
| 754 ppmScale <- ppmScale + ppm.value | |
| 755 | |
| 756 Spectrum_data_calib <- matrix(nrow=n, ncol=end-start+1, | |
| 757 dimnames=list(rownames(Spectrum_data), ppmScale)) | |
| 758 for (i in 1:n) { | |
| 759 shift <- (maxpeak-TMSPpeaks[i]) | |
| 760 Spectrum_data_calib[i,(1+shift):m] <- Spectrum_data[i,1:(m-shift)] | |
| 761 if (shift > 0) { | |
| 762 Spectrum_data_calib[i,1:shift] <- Spectrum_data[i,(m-shift+1):m] | |
| 763 } | |
| 764 } | |
| 765 } | |
| 766 | |
| 767 | |
| 768 | |
| 769 | |
| 770 # Plot of the spectra --------------------------------------------------- | |
| 771 | |
| 772 ppm = xstart = value = xend = Legend = NULL # only for R CMD check | |
| 773 | |
| 774 | |
| 775 # with the search zone for TMSP and the location of the peaks just found | |
| 776 if (!is.null(rowindex_graph)) { | |
| 777 | |
| 778 if (range == "window") { | |
| 779 if (ppm.ir == TRUE) { | |
| 780 fromto <- fromto.RC | |
| 781 } else { | |
| 782 fromto <- list() | |
| 783 idcol <- as.numeric(colnames(Spectrum_data)) | |
| 784 for (i in 1:length(fromto.RC)) { | |
| 785 fromto[[i]] <- as.numeric(colnames(Spectrum_data))[fromto.RC[[i]]] | |
| 786 } | |
| 787 } | |
| 788 } else { | |
| 789 fromto <- fromto.RC | |
| 790 } | |
| 791 | |
| 792 # TMSPloc in ppm | |
| 793 TMSPloc <- as.numeric(colnames(Spectrum_data))[TMSPpeaks[rowindex_graph]] | |
| 794 | |
| 795 # num plot per window | |
| 796 num.stacked <- 6 | |
| 797 | |
| 798 # rectanglar bands of color for the search zone | |
| 799 rects <- data.frame(xstart = sapply(fromto, function(x) x[[1]]), | |
| 800 xend = sapply(fromto, function(x) x[[2]]), | |
| 801 Legend = "TMSP search zone and location") | |
| 802 | |
| 803 # vlines for TMSP peak | |
| 804 addlines <- data.frame(rowname = rownames(Spectrum_data)[rowindex_graph],TMSPloc) | |
| 805 | |
| 806 nn <- length(rowindex_graph) | |
| 807 i <- 1 | |
| 808 j <- 1 | |
| 809 plots <- vector(mode = "list", length = ceiling(nn/num.stacked)) | |
| 810 | |
| 811 while (i <= nn) { | |
| 812 | |
| 813 last <- min(i + num.stacked - 1, nn) | |
| 814 | |
| 815 melted <- reshape2::melt(Re(Spectrum_data[i:last, ]), | |
| 816 varnames = c("rowname", "ppm")) | |
| 817 | |
| 818 plots[[j]] <- ggplot2::ggplot() + ggplot2::theme_bw() + | |
| 819 ggplot2::geom_line(data = melted, | |
| 820 ggplot2::aes(x = ppm, y = value)) + | |
| 821 ggplot2::geom_rect(data = rects, ggplot2::aes(xmin = xstart, xmax = xend, | |
| 822 ymin = -Inf, ymax = Inf, fill = Legend), alpha = 0.4) + | |
| 823 ggplot2::facet_grid(rowname ~ ., scales = "free_y") + | |
| 824 ggplot2::theme(legend.position = "none") + | |
| 825 ggplot2::geom_vline(data = addlines, ggplot2::aes(xintercept = TMSPloc), | |
| 826 color = "red", show.legend = TRUE) + | |
| 827 ggplot2::ggtitle("TMSP peak search zone and location") + | |
| 828 ggplot2::theme(legend.position = "top", legend.text = ggplot2::element_text()) | |
| 829 | |
| 830 | |
| 831 | |
| 832 if ((melted[1, "ppm"] - melted[(dim(melted)[1]), "ppm"]) > 0) { | |
| 833 plots[[j]] <- plots[[j]] + ggplot2::scale_x_reverse() | |
| 834 } | |
| 835 | |
| 836 i <- last + 1 | |
| 837 j <- j + 1 | |
| 838 } | |
| 839 | |
| 840 plots | |
| 841 } | |
| 842 | |
| 843 | |
| 844 # Return the results ---------------------------------------------- | |
| 845 Spectrum_data <- endTreatment("InternalReferencing", begin_info, Spectrum_data_calib) | |
| 846 | |
| 847 if (is.null(plots)) { | |
| 848 return(Spectrum_data) | |
| 849 } else { | |
| 850 return(list(Spectrum_data = Spectrum_data, plots = plots)) | |
| 851 } | |
| 852 | |
| 853 } | |
| 854 | |
| 855 ## ==================================================== | |
| 856 # ZeroOrderPhaseCorrection | |
| 857 ## ==================================================== | |
| 858 | |
| 859 ZeroOrderPhaseCorrection <- function(Spectrum_data, type.zopc = c("rms", "manual", "max"), | |
| 860 plot_rms = NULL, returnAngle = FALSE, createWindow = TRUE, | |
| 861 angle = NULL, plot_spectra = FALSE, | |
| 862 ppm.zopc = TRUE, exclude.zopc = list(c(5.1,4.5))) { | |
| 863 | |
| 864 | |
| 865 # Data initialisation and checks ---------------------------------------------- | |
| 866 | |
| 867 # Entry arguments definition: | |
| 868 # plot_rms : graph of rms criterion returnAngle : if TRUE, returns avector of | |
| 869 # optimal angles createWindow : for plot_rms plots angle : If angle is not NULL, | |
| 870 # spectra are rotated according to the angle vector values | |
| 871 # plot_spectra : if TRUE, plot rotated spectra | |
| 872 | |
| 873 | |
| 874 | |
| 875 begin_info <- beginTreatment("ZeroOrderPhaseCorrection", Spectrum_data) | |
| 876 Spectrum_data <- begin_info[["Signal_data"]] | |
| 877 n <- nrow(Spectrum_data) | |
| 878 m <- ncol(Spectrum_data) | |
| 879 | |
| 880 rnames <- rownames(Spectrum_data) | |
| 881 | |
| 882 # Check input arguments | |
| 883 type.zopc <- match.arg(type.zopc) | |
| 884 checkArg(ppm.zopc, c("bool")) | |
| 885 checkArg(unlist(exclude.zopc), c("num"), can.be.null = TRUE) | |
| 886 | |
| 887 | |
| 888 # type.zopc in c("max", "rms") ----------------------------------------- | |
| 889 if (type.zopc %in% c("max", "rms")) { | |
| 890 # angle is found by optimization | |
| 891 | |
| 892 # rms function to be optimised | |
| 893 rms <- function(ang, y, meth = c("max", "rms")) { | |
| 894 # if (debug_plot) { graphics::abline(v=ang, col='gray60') } | |
| 895 roty <- y * exp(complex(real = 0, imaginary = ang)) # spectrum rotation | |
| 896 Rey <- Re(roty) | |
| 897 | |
| 898 if (meth == "rms") { | |
| 899 ReyPos <- Rey[Rey >= 0] # select positive intensities | |
| 900 POSss <- sum((ReyPos)^2, na.rm = TRUE) # SS for positive intensities | |
| 901 ss <- sum((Rey)^2, na.rm = TRUE) # SS for all intensities | |
| 902 return(POSss/ss) # criterion : SS for positive values / SS for all intensities | |
| 903 } else { | |
| 904 maxi <- max(Rey, na.rm = TRUE) | |
| 905 return(maxi) | |
| 906 } | |
| 907 } | |
| 908 | |
| 909 | |
| 910 # Define the interval where to search for (by defining Data) | |
| 911 if (is.null(exclude.zopc)) { | |
| 912 Data <- Spectrum_data | |
| 913 } else { | |
| 914 | |
| 915 # if ppm.zopc == TRUE, then exclude.zopc is in the colnames values, else, in the column | |
| 916 # index | |
| 917 if (ppm.zopc == TRUE) { | |
| 918 colindex <- as.numeric(colnames(Spectrum_data)) | |
| 919 } else { | |
| 920 colindex <- 1:m | |
| 921 } | |
| 922 | |
| 923 # Second check for the argument exclude.zopc | |
| 924 diff <- diff(unlist(exclude.zopc))[1:length(diff(unlist(exclude.zopc)))%%2 !=0] | |
| 925 for (i in 1:length(diff)) { | |
| 926 if (ppm.zopc == TRUE & diff[i] >= 0) { | |
| 927 stop(paste("Invalid region removal because from <= to in ppm.zopc")) | |
| 928 } else if (ppm.zopc == FALSE & diff[i] <= 0) {stop(paste("Invalid region removal because from >= to in column index"))} | |
| 929 } | |
| 930 | |
| 931 | |
| 932 Int <- vector("list", length(exclude.zopc)) | |
| 933 for (i in 1:length(exclude.zopc)) { | |
| 934 Int[[i]] <- indexInterval(colindex, from = exclude.zopc[[i]][1], | |
| 935 to = exclude.zopc[[i]][2], inclusive = TRUE) | |
| 936 } | |
| 937 | |
| 938 vector <- rep(1, m) | |
| 939 vector[unlist(Int)] <- 0 | |
| 940 if (n > 1) { | |
| 941 Data <- sweep(Spectrum_data, MARGIN = 2, FUN = "*", vector) # Cropped_Spectrum | |
| 942 } else { | |
| 943 Data <- Spectrum_data * vector | |
| 944 } # Cropped_Spectrum | |
| 945 } | |
| 946 | |
| 947 | |
| 948 # angles computation | |
| 949 Angle <- c() | |
| 950 for (k in 1:n) | |
| 951 { | |
| 952 # The function is rms is periodic (period 2pi) and it seems that there is a phase | |
| 953 # x such that rms is unimodal (i.e. decreasing then increasing) on the interval | |
| 954 # [x; x+2pi]. However, if we do the optimization for example on [x-pi; x+pi], | |
| 955 # instead of being decreasing then increasing, it might be increasing then | |
| 956 # decreasing in which case optimize, thinking it is a valley will have to choose | |
| 957 # between the left or the right of this hill and if it chooses wrong, it will end | |
| 958 # up at like x-pi while the minimum is close to x+pi. | |
| 959 | |
| 960 # Supposing that rms is unimodal, the classical 1D unimodal optimization will | |
| 961 # work in either [-pi;pi] or [0;2pi] (this is not easy to be convinced by that I | |
| 962 # agree) and we can check which one it is simply by the following trick | |
| 963 | |
| 964 f0 <- rms(0, Data[k, ],meth = type.zopc) | |
| 965 fpi <- rms(pi, Data[k, ], meth = type.zopc) | |
| 966 if (f0 < fpi) { | |
| 967 interval <- c(-pi, pi) | |
| 968 } else { | |
| 969 interval <- c(0, 2 * pi) | |
| 970 } | |
| 971 | |
| 972 # graphs of rms criteria | |
| 973 debug_plot <- F # rms should not plot anything now, only when called by optimize | |
| 974 if (!is.null(plot_rms) && rnames[k] %in% plot_rms) { | |
| 975 x <- seq(min(interval), max(interval), length.out = 100) | |
| 976 y <- rep(1, 100) | |
| 977 for (K in (1:100)) { | |
| 978 y[K] <- rms(x[K], Data[k, ], meth = type.zopc) | |
| 979 } | |
| 980 if (createWindow == TRUE) { | |
| 981 grDevices::dev.new(noRStudioGD = FALSE) | |
| 982 } | |
| 983 graphics::plot(x, y, main = paste("Criterion maximization \n", | |
| 984 rownames(Data)[k]), ylim = c(0, 1.1), | |
| 985 ylab = "positiveness criterion", xlab = "angle ") | |
| 986 debug_plot <- T | |
| 987 } | |
| 988 | |
| 989 # Best angle | |
| 990 best <- stats::optimize(rms, interval = interval, maximum = TRUE, | |
| 991 y = Data[k,], meth = type.zopc) | |
| 992 ang <- best[["maximum"]] | |
| 993 | |
| 994 | |
| 995 if (debug_plot) { | |
| 996 graphics::abline(v = ang, col = "black") | |
| 997 graphics::text(x = (ang+0.1*ang), y = (y[ang]-0.1*y[ang]), labels = round(ang, 3)) | |
| 998 } | |
| 999 | |
| 1000 # Spectrum rotation | |
| 1001 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = ang)) | |
| 1002 Angle <- c(Angle, ang) | |
| 1003 } | |
| 1004 | |
| 1005 | |
| 1006 | |
| 1007 | |
| 1008 } else { | |
| 1009 # type.zopc is "manual" ------------------------------------------------------- | |
| 1010 # if Angle is already specified and no optimisation is needed | |
| 1011 Angle <- angle | |
| 1012 | |
| 1013 if (!is.vector(angle)) { | |
| 1014 stop("angle is not a vector") | |
| 1015 } | |
| 1016 | |
| 1017 if (!is.numeric(angle)) { | |
| 1018 stop("angle is not a numeric") | |
| 1019 } | |
| 1020 | |
| 1021 if (length(angle) != n) { | |
| 1022 stop(paste("angle has length", length(angle), "and there are", n, "spectra to rotate.")) | |
| 1023 } | |
| 1024 for (k in 1:n) { | |
| 1025 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = - angle[k])) | |
| 1026 } | |
| 1027 } | |
| 1028 | |
| 1029 | |
| 1030 # Draw spectra | |
| 1031 if (plot_spectra == TRUE) { | |
| 1032 nn <- ceiling(n/4) | |
| 1033 i <- 1 | |
| 1034 for (k in 1:nn) { | |
| 1035 if (createWindow == TRUE) { | |
| 1036 grDevices::dev.new(noRStudioGD = FALSE) | |
| 1037 } | |
| 1038 graphics::par(mfrow = c(4, 2)) | |
| 1039 while (i <= n) { | |
| 1040 last <- min(i + 4 - 1, n) | |
| 1041 graphics::plot(Re(Spectrum_data[i, ]), type = "l", ylab = "intensity", | |
| 1042 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Real part")) | |
| 1043 graphics::plot(Im(Spectrum_data[i, ]), type = "l", ylab = "intensity", | |
| 1044 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Imaginary part")) | |
| 1045 i <- i + 1 | |
| 1046 } | |
| 1047 i <- last + 1 | |
| 1048 } | |
| 1049 } | |
| 1050 | |
| 1051 | |
| 1052 # Data finalisation ---------------------------------------------- | |
| 1053 | |
| 1054 Spectrum_data <- endTreatment("ZeroOrderPhaseCorrection", begin_info, Spectrum_data) | |
| 1055 if (returnAngle) { | |
| 1056 return(list(Spectrum_data = Spectrum_data, Angle = Angle)) | |
| 1057 } else { | |
| 1058 return(Spectrum_data) | |
| 1059 } | |
| 1060 } | |
| 1061 | |
| 1062 | |
| 1063 ## ==================================================== | |
| 1064 # Baseline Correction | |
| 1065 ## ==================================================== | |
| 1066 BaselineCorrection <- function(Spectrum_data, ptw.bc = TRUE, maxIter = 42, | |
| 1067 lambda.bc = 1e+07, p.bc = 0.05, eps = 1e-08, | |
| 1068 ppm.bc = TRUE, exclude.bc = list(c(5.1,4.5)), | |
| 1069 returnBaseline = F) { | |
| 1070 | |
| 1071 # Data initialisation ---------------------------------------------- | |
| 1072 begin_info <- beginTreatment("BaselineCorrection", Spectrum_data, force.real = T) | |
| 1073 Spectrum_data <- begin_info[["Signal_data"]] | |
| 1074 p <- p.bc | |
| 1075 lambda <- lambda.bc | |
| 1076 n <- dim(Spectrum_data)[1] | |
| 1077 m <- dim(Spectrum_data)[2] | |
| 1078 | |
| 1079 | |
| 1080 # Data check | |
| 1081 checkArg(ptw.bc, c("bool")) | |
| 1082 checkArg(maxIter, c("int", "pos")) | |
| 1083 checkArg(lambda, c("num", "pos0")) | |
| 1084 checkArg(p.bc, c("num", "pos0")) | |
| 1085 checkArg(eps, c("num", "pos0")) | |
| 1086 checkArg(returnBaseline, c("bool")) | |
| 1087 checkArg(ppm.bc, c("bool")) | |
| 1088 checkArg(unlist(exclude.bc), c("num"), can.be.null = TRUE) | |
| 1089 | |
| 1090 # Define the interval where to search for (by defining Data) | |
| 1091 if (is.null(exclude.bc)) { | |
| 1092 exclude_index <- NULL | |
| 1093 } else { | |
| 1094 # if ppm.bc == TRUE, then exclude.bc is in the colnames values, else, in the column | |
| 1095 # index | |
| 1096 if (ppm.bc == TRUE) { | |
| 1097 colindex <- as.numeric(colnames(Spectrum_data)) | |
| 1098 } else { | |
| 1099 colindex <- 1:m | |
| 1100 } | |
| 1101 | |
| 1102 Int <- vector("list", length(exclude.bc)) | |
| 1103 for (i in 1:length(exclude.bc)) { | |
| 1104 Int[[i]] <- indexInterval(colindex, from = exclude.bc[[i]][1], | |
| 1105 to = exclude.bc[[i]][2], inclusive = TRUE) | |
| 1106 } | |
| 1107 exclude_index <- unlist(Int) | |
| 1108 } | |
| 1109 | |
| 1110 # Baseline Correction implementation definition ---------------------- | |
| 1111 | |
| 1112 # 2 Ways: either use the function asysm from the ptw package or by | |
| 1113 # built-in functions | |
| 1114 if (ptw.bc) { | |
| 1115 asysm <- ptw::asysm | |
| 1116 } else { | |
| 1117 difsmw <- function(y, lambda, w, d) { | |
| 1118 # Weighted smoothing with a finite difference penalty cf Eilers, 2003. | |
| 1119 # (A perfect smoother) | |
| 1120 # y: signal to be smoothed | |
| 1121 # lambda: smoothing parameter | |
| 1122 # w: weights (use0 zeros for missing values) | |
| 1123 # d: order of differences in penalty (generally 2) | |
| 1124 m <- length(y) | |
| 1125 W <- Matrix::Diagonal(x=w) | |
| 1126 E <- Matrix::Diagonal(m) | |
| 1127 D <- Matrix::diff(E, differences = d) | |
| 1128 C <- Matrix::chol(W + lambda * t(D) %*% D) | |
| 1129 x <- Matrix::solve(C, Matrix::solve(t(C), w * y)) | |
| 1130 return(as.numeric(x)) | |
| 1131 | |
| 1132 } | |
| 1133 asysm <- function(y, lambda, p, eps, exclude_index) { | |
| 1134 # Baseline estimation with asymmetric least squares | |
| 1135 # y: signal | |
| 1136 # lambda: smoothing parameter (generally 1e5 to 1e8) | |
| 1137 # p: asymmetry parameter (generally 0.001) | |
| 1138 # d: order of differences in penalty (generally 2) | |
| 1139 # eps: 1e-8 in ptw package | |
| 1140 m <- length(y) | |
| 1141 w <- rep(1, m) | |
| 1142 i <- 1 | |
| 1143 repeat { | |
| 1144 z <- difsmw(y, lambda, w, d = 2) | |
| 1145 w0 <- w | |
| 1146 p_vect <- rep((1-p), m) # if y <= z + eps | |
| 1147 p_vect[y > z + eps | y < 0] <- p # if y > z + eps | y < 0 | |
| 1148 if(!is.null(exclude_index)){ | |
| 1149 p_vect[exclude_index] <- 0 # if exclude area | |
| 1150 } | |
| 1151 | |
| 1152 w <- p_vect | |
| 1153 # w <- p * (y > z + eps | y < 0) + (1 - p) * (y <= z + eps) | |
| 1154 | |
| 1155 if (sum(abs(w - w0)) == 0) { | |
| 1156 break | |
| 1157 } | |
| 1158 i <- i + 1 | |
| 1159 if (i > maxIter) { | |
| 1160 warning("cannot find Baseline estimation in asysm") | |
| 1161 break | |
| 1162 } | |
| 1163 } | |
| 1164 return(z) | |
| 1165 } | |
| 1166 } | |
| 1167 | |
| 1168 # Baseline estimation ---------------------------------------------- | |
| 1169 Baseline <- matrix(NA, nrow = nrow(Spectrum_data), ncol = ncol(Spectrum_data)) | |
| 1170 | |
| 1171 # for (k in 1:n) { | |
| 1172 # Baseline[k, ] <- asysm(y = Spectrum_data[k, ], lambda = lambda, p = p, eps = eps) | |
| 1173 | |
| 1174 if (ptw.bc ){ | |
| 1175 Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p, | |
| 1176 eps = eps) | |
| 1177 }else { | |
| 1178 Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p, | |
| 1179 eps = eps, exclude_index = exclude_index) | |
| 1180 } | |
| 1181 | |
| 1182 | |
| 1183 Spectrum_data <- Spectrum_data - t(Baseline) | |
| 1184 # } | |
| 1185 | |
| 1186 # Data finalisation ---------------------------------------------- | |
| 1187 Spectrum_data <- endTreatment("BaselineCorrection", begin_info, Spectrum_data) # FIXME create removeImaginary filter ?? | |
| 1188 | |
| 1189 if (returnBaseline) { | |
| 1190 return(list(Spectrum_data = Spectrum_data, Baseline = Baseline)) | |
| 1191 } else { | |
| 1192 return(Spectrum_data) | |
| 1193 } | |
| 1194 } | |
| 1195 | |
| 1196 | |
| 1197 | |
| 1198 ## ==================================================== | |
| 1199 # NegativeValuesZeroing | |
| 1200 ## ==================================================== | |
| 1201 | |
| 1202 NegativeValuesZeroing <- function(Spectrum_data) { | |
| 1203 # Data initialisation and checks ---------------------------------------------- | |
| 1204 begin_info <- beginTreatment("NegativeValuesZeroing", Spectrum_data, force.real = T) | |
| 1205 Spectrum_data <- begin_info[["Signal_data"]] | |
| 1206 | |
| 1207 # NegativeValuesZeroing ---------------------------------------------- | |
| 1208 Spectrum_data[Spectrum_data < 0] <- 0 | |
| 1209 | |
| 1210 # Data finalisation ---------------------------------------------- | |
| 1211 return(endTreatment("NegativeValuesZeroing", begin_info, Spectrum_data)) | |
| 1212 } | |
| 1213 | |
| 1214 |
