diff NmrPreprocessing_script.R @ 7:122df1bf0a8c draft default tip

planemo upload for repository https://github.com/workflow4metabolomics/nmr_preprocessing commit 3d328007dd7716848ec2eeb6c2a472f27eeb2995
author workflow4metabolomics
date Fri, 11 Jul 2025 08:33:38 +0000
parents 5b06800f3449
children
line wrap: on
line diff
--- a/NmrPreprocessing_script.R	Wed May 13 03:52:09 2020 -0400
+++ b/NmrPreprocessing_script.R	Fri Jul 11 08:33:38 2025 +0000
@@ -2,1243 +2,1287 @@
 # Internal functions
 ## ==========================
 
-# beginTreatment 
-beginTreatment <- function(name, Signal_data = NULL, Signal_info = NULL, 
+# beginTreatment
+beginTreatment <- function(name, Signal_data = NULL, Signal_info = NULL,
                            force.real = FALSE) {
-  
-  cat("Begin", name, "\n")
-  
-  
-  # Formatting the Signal_data and Signal_info -----------------------
-  
-  vec <- is.vector(Signal_data)
-  if (vec) {
-    Signal_data <- vec2mat(Signal_data)
-  }
-  if (is.vector(Signal_info)) {
-    Signal_info <- vec2mat(Signal_info)
-  }
-  if (!is.null(Signal_data)) {
-    if (!is.matrix(Signal_data)) {
-      stop("Signal_data is not a matrix.")
+    cat("Begin", name, "\n")
+
+
+    # Formatting the Signal_data and Signal_info -----------------------
+
+    vec <- is.vector(Signal_data)
+    if (vec) {
+        Signal_data <- vec2mat(Signal_data)
     }
-    if (!is.complex(Signal_data) && !is.numeric(Signal_data)) {
-      stop("Signal_data contains non-numerical values.")
+    if (is.vector(Signal_info)) {
+        Signal_info <- vec2mat(Signal_info)
+    }
+    if (!is.null(Signal_data)) {
+        if (!is.matrix(Signal_data)) {
+            stop("Signal_data is not a matrix.")
+        }
+        if (!is.complex(Signal_data) && !is.numeric(Signal_data)) {
+            stop("Signal_data contains non-numerical values.")
+        }
     }
-  }
-  if (!is.null(Signal_info) && !is.matrix(Signal_info)) {
-    stop("Signal_info is not a matrix.")
-  }
-  
-  
-  Original_data <- Signal_data
-  
-  # Extract the real part of the spectrum ---------------------------
-  
-  if (force.real) {
-    if (is.complex(Signal_data)) {
-      Signal_data <- Re(Signal_data)
-    } else {
-      # The signal is numeric Im(Signal_data) is zero anyway so let's avoid
-      # using complex(real=...,imaginary=0) which would give a complex signal
-      # in endTreatment()
-      force.real <- FALSE
+    if (!is.null(Signal_info) && !is.matrix(Signal_info)) {
+        stop("Signal_info is not a matrix.")
     }
-  }
-  
-  
-  # Return the formatted data and metadata entries --------------------
-  
-  return(list(start = proc.time(), vec = vec, force.real = force.real, 
-              Original_data = Original_data, Signal_data = Signal_data, Signal_info = Signal_info))
+
+
+    Original_data <- Signal_data
+
+    # Extract the real part of the spectrum ---------------------------
+
+    if (force.real) {
+        if (is.complex(Signal_data)) {
+            Signal_data <- Re(Signal_data)
+        } else {
+            # The signal is numeric Im(Signal_data) is zero anyway so let's avoid
+            # using complex(real=...,imaginary=0) which would give a complex signal
+            # in endTreatment()
+            force.real <- FALSE
+        }
+    }
+
+
+    # Return the formatted data and metadata entries --------------------
+
+    return(list(
+        start = proc.time(), vec = vec, force.real = force.real,
+        Original_data = Original_data, Signal_data = Signal_data, Signal_info = Signal_info
+    ))
 }
 
-# endTreatment 
+# endTreatment
 endTreatment <- function(name, begin_info, Signal_data) {
-  
-  # begin_info: object outputted from beginTreatment
-  
-  
-  # Formatting the entries and printing process time -----------------------
-  end_time <- proc.time()  # record it as soon as possible
-  start_time <- begin_info[["start"]]
-  delta_time <- end_time - start_time
-  delta <- delta_time[]
-  cat("End", name, "\n")
-  cat("It lasted", round(delta["user.self"], 3), "s user time,", round(delta["sys.self"],3),
-      "s system time and", round(delta["elapsed"], 3), "s elapsed time.\n")
-  
-  
-  if (begin_info[["force.real"]]) {
-    # The imaginary part is left untouched
-    i <- complex(real = 0, imaginary = 1)
-    Signal_data <- Signal_data + i * Im(begin_info[["Original_data"]])
-  }
-  
-  if (begin_info[["vec"]]) {
-    Signal_data <- Signal_data[1, ]
-  }
-  
-  # Return the formatted data and metadata entries --------------------
-  return(Signal_data)
+    # begin_info: object outputted from beginTreatment
+
+
+    # Formatting the entries and printing process time -----------------------
+    end_time <- proc.time() # record it as soon as possible
+    start_time <- begin_info[["start"]]
+    delta_time <- end_time - start_time
+    delta <- delta_time[]
+    cat("End", name, "\n")
+    cat(
+        "It lasted", round(delta["user.self"], 3), "s user time,", round(delta["sys.self"], 3),
+        "s system time and", round(delta["elapsed"], 3), "s elapsed time.\n"
+    )
+
+
+    if (begin_info[["force.real"]]) {
+        # The imaginary part is left untouched
+        i <- complex(real = 0, imaginary = 1)
+        Signal_data <- Signal_data + i * Im(begin_info[["Original_data"]])
+    }
+
+    if (begin_info[["vec"]]) {
+        Signal_data <- Signal_data[1, ]
+    }
+
+    # Return the formatted data and metadata entries --------------------
+    return(Signal_data)
 }
 
-# checkArg 
-checkArg <- function(arg, checks, can.be.null=FALSE) {
-  check.list <- list(bool=c(is.logical, "a boolean"),
-                     int =c(function(x){x%%1==0}, "an integer"),
-                     num =c(is.numeric, "a numeric"),
-                     str =c(is.character, "a string"),
-                     pos =c(function(x){x>0}, "positive"),
-                     pos0=c(function(x){x>=0}, "positive or zero"),
-                     l1 =c(function(x){length(x)==1}, "of length 1")
-  )
-  if (is.null(arg)) {
-    if (!can.be.null) {
-      stop(deparse(substitute(arg)), " is null.")
+# checkArg
+checkArg <- function(arg, checks, can.be.null = FALSE) {
+    check.list <- list(
+        bool = c(is.logical, "a boolean"),
+        int = c(function(x) {
+            x %% 1 == 0
+        }, "an integer"),
+        num = c(is.numeric, "a numeric"),
+        str = c(is.character, "a string"),
+        pos = c(function(x) {
+            x > 0
+        }, "positive"),
+        pos0 = c(function(x) {
+            x >= 0
+        }, "positive or zero"),
+        l1 = c(function(x) {
+            length(x) == 1
+        }, "of length 1")
+    )
+    if (is.null(arg)) {
+        if (!can.be.null) {
+            stop(deparse(substitute(arg)), " is null.")
+        }
+    } else {
+        if (is.matrix(arg)) {
+            stop(deparse(substitute(arg)), " is not scalar.")
+        }
+        for (c in checks) {
+            if (!check.list[[c]][[1]](arg)) {
+                stop(deparse(substitute(arg)), " is not ", check.list[[c]][[2]], ".")
+            }
+        }
     }
-  } else {
-    if (is.matrix(arg)) {
-      stop(deparse(substitute(arg)), " is not scalar.")
-    }
-    for (c in checks) {
-      if (!check.list[[c]][[1]](arg)) {
-        stop(deparse(substitute(arg)), " is not ", check.list[[c]][[2]], ".")
-      }
-    }
-  }
 }
 
-# getArg 
-getArg <- function(arg, info, argname, can.be.absent=FALSE) {
-  if (is.null(arg)) {
-    start <- paste("impossible to get argument", argname, "it was not given directly and");
-    if (!is.matrix(info)) {
-      stop(paste(start, "the info matrix was not given"))
+# getArg
+getArg <- function(arg, info, argname, can.be.absent = FALSE) {
+    if (is.null(arg)) {
+        start <- paste("impossible to get argument", argname, "it was not given directly and")
+        if (!is.matrix(info)) {
+            stop(paste(start, "the info matrix was not given"))
+        }
+        if (!(argname %in% colnames(info))) {
+            if (can.be.absent) {
+                return(NULL)
+            } else {
+                stop(paste(start, "is not in the info matrix"))
+            }
+        }
+        if (nrow(info) < 1) {
+            stop(paste(start, "the info matrix has no row"))
+        }
+        arg <- info[1, argname]
+        if (is.na(arg)) {
+            stop(paste(start, "it is NA in the info matrix"))
+        }
     }
-    if (!(argname %in% colnames(info))) {
-      if (can.be.absent) {
-        return(NULL)
-      } else {
-        stop(paste(start, "is not in the info matrix"))
-      }
-    }
-    if (nrow(info) < 1) {
-      stop(paste(start, "the info matrix has no row"))
-    }
-    arg <- info[1,argname]
-    if (is.na(arg)) {
-      stop(paste(start, "it is NA in the info matrix"))
-    }
-  }
-  return(arg)
+    return(arg)
 }
 
 # binarySearch
 binarySearch <- function(a, target, lower = TRUE) {
-  # search the index i in a such that a[i] == target 
-  # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target
-  # if !lower, it seraches the closer a[i] such that a[i] > target 
-  # a should be monotone but can be increasing or decreasing
-  
-  # if a is increasing INVARIANT: a[amin] < target < a[amax]
-  N <- length(a)
-  if ((a[N] - target) * (a[N] - a[1]) <= 0) {
-    return(N)
-  }
-  if ((a[1] - target) * (a[N] - a[1]) >= 0) {
-    return(1)
-  }
-  amin <- 1
-  amax <- N
-  while (amin + 1 < amax) {
-    amid <- floor((amin + amax)/2)
-    if ((a[amid] - target) * (a[amax] - a[amid]) < 0) {
-      amin <- amid
-    } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) {
-      amax <- amid
+    # search the index i in a such that a[i] == target
+    # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target
+    # if !lower, it seraches the closer a[i] such that a[i] > target
+    # a should be monotone but can be increasing or decreasing
+
+    # if a is increasing INVARIANT: a[amin] < target < a[amax]
+    N <- length(a)
+    if ((a[N] - target) * (a[N] - a[1]) <= 0) {
+        return(N)
+    }
+    if ((a[1] - target) * (a[N] - a[1]) >= 0) {
+        return(1)
+    }
+    amin <- 1
+    amax <- N
+    while (amin + 1 < amax) {
+        amid <- floor((amin + amax) / 2)
+        if ((a[amid] - target) * (a[amax] - a[amid]) < 0) {
+            amin <- amid
+        } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) {
+            amax <- amid
+        } else {
+            # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] ==
+            # target
+            return(amid)
+        }
+    }
+    if (xor(lower, a[amin] > a[amax])) {
+        # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max])
+        # If increasing and we want the lower, we take amin
+        # If decreasing and we want the bigger, we take amin too
+        return(amin)
     } else {
-      # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] ==
-      # target
-      return(amid)
+        return(amax)
     }
-  }
-  if (xor(lower, a[amin] > a[amax])) {
-    # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) 
-    # If increasing and we want the lower, we take amin 
-    # If decreasing and we want the bigger, we take amin too
-    return(amin)
-  } else {
-    return(amax)
-  }
 }
 
 # Interpol
 Interpol <- function(t, y) {
-  # y: sample
-  # t : warping function
-  
-  m <- length(y)
-  # t <= m-1
-  # because if t > m-1, y[ti+1] will be NA when we compute g
-  valid <- 1 <= t & t <= m-1 # FIXME it was '<' in Bubble v2
-  s <- (1:m)[valid]
-  ti <- floor(t[s])
-  tr <- t[s] - ti
-  g <- y[ti + 1] - y[ti]
-  f <- y[ti] + tr * g
-  list(f=f, s=s, g=g)
+    # y: sample
+    # t : warping function
+
+    m <- length(y)
+    # t <= m-1
+    # because if t > m-1, y[ti+1] will be NA when we compute g
+    valid <- 1 <= t & t <= m - 1 # FIXME it was '<' in Bubble v2
+    s <- (1:m)[valid]
+    ti <- floor(t[s])
+    tr <- t[s] - ti
+    g <- y[ti + 1] - y[ti]
+    f <- y[ti] + tr * g
+    list(f = f, s = s, g = g)
 }
 
 # vec2mat
 vec2mat <- function(vec) {
-  return(matrix(vec, nrow = 1, dimnames = list(c(1), names(vec)))) 
-  
+    return(matrix(vec, nrow = 1, dimnames = list(c(1), names(vec))))
 }
 
 # binarySearch
 binarySearch <- function(a, target, lower = TRUE) {
-  # search the index i in a such that a[i] == target 
-  # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target
-  # if !lower, it seraches the closer a[i] such that a[i] > target 
-  # a should be monotone but can be increasing or decreasing
-  
-  # if a is increasing INVARIANT: a[amin] < target < a[amax]
-  N <- length(a)
-  if ((a[N] - target) * (a[N] - a[1]) <= 0) {
-    return(N)
-  }
-  if ((a[1] - target) * (a[N] - a[1]) >= 0) {
-    return(1)
-  }
-  amin <- 1
-  amax <- N
-  while (amin + 1 < amax) {
-    amid <- floor((amin + amax)/2)
-    if ((a[amid] - target) * (a[amax] - a[amid]) < 0) {
-      amin <- amid
-    } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) {
-      amax <- amid
+    # search the index i in a such that a[i] == target
+    # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target
+    # if !lower, it seraches the closer a[i] such that a[i] > target
+    # a should be monotone but can be increasing or decreasing
+
+    # if a is increasing INVARIANT: a[amin] < target < a[amax]
+    N <- length(a)
+    if ((a[N] - target) * (a[N] - a[1]) <= 0) {
+        return(N)
+    }
+    if ((a[1] - target) * (a[N] - a[1]) >= 0) {
+        return(1)
+    }
+    amin <- 1
+    amax <- N
+    while (amin + 1 < amax) {
+        amid <- floor((amin + amax) / 2)
+        if ((a[amid] - target) * (a[amax] - a[amid]) < 0) {
+            amin <- amid
+        } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) {
+            amax <- amid
+        } else {
+            # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] ==
+            # target
+            return(amid)
+        }
+    }
+    if (xor(lower, a[amin] > a[amax])) {
+        # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max])
+        # If increasing and we want the lower, we take amin
+        # If decreasing and we want the bigger, we take amin too
+        return(amin)
     } else {
-      # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] ==
-      # target
-      return(amid)
+        return(amax)
     }
-  }
-  if (xor(lower, a[amin] > a[amax])) {
-    # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) 
-    # If increasing and we want the lower, we take amin 
-    # If decreasing and we want the bigger, we take amin too
-    return(amin)
-  } else {
-    return(amax)
-  }
 }
 
 
 # indexInterval
-indexInterval <- function (a, from, to, inclusive=TRUE) {
-  # If inclusive and from <= to, we need to take the lower
-  # If not inclusive and from > to, we need to take the lower too
-  lowerFrom <- xor(inclusive, from > to)
-  fromIndex <- binarySearch(a, from, lowerFrom)
-  toIndex <- binarySearch(a, to, !lowerFrom)
-  return(fromIndex:toIndex)
+indexInterval <- function(a, from, to, inclusive = TRUE) {
+    # If inclusive and from <= to, we need to take the lower
+    # If not inclusive and from > to, we need to take the lower too
+    lowerFrom <- xor(inclusive, from > to)
+    fromIndex <- binarySearch(a, from, lowerFrom)
+    toIndex <- binarySearch(a, to, !lowerFrom)
+    return(fromIndex:toIndex)
 }
 
 
 
 ## ==========================
-# GroupDelayCorrection 
+# GroupDelayCorrection
 ## ==========================
 GroupDelayCorrection <- function(Fid_data, Fid_info = NULL, group_delay = NULL) {
-  
-    
     # Data initialisation and checks ----------------------------------------------
-    
+
     begin_info <- beginTreatment("GroupDelayCorrection", Fid_data, Fid_info)
     Fid_data <- begin_info[["Signal_data"]]
     dimension_names <- dimnames(Fid_data)
     Fid_info <- begin_info[["Signal_info"]]
     checkArg(group_delay, c("num", "pos0"), can.be.null = TRUE)
     # if Fid_info and group_delay are NULL, getArg will generate an error
-    
+
     group_delay <- getArg(group_delay, Fid_info, "GRPDLY", can.be.absent = TRUE)
-    
+
     if (is.null(group_delay)) {
-      
-      # See DetermineBrukerDigitalFilter.m in matNMR MATLAB library
-      group_delay_matrix <- matrix(c(44.75, 46, 46.311, 33.5, 36.5, 36.53, 66.625, 
-                                     48, 47.87, 59.0833, 50.1667, 50.229, 68.5625, 53.25, 53.289, 60.375, 
-                                     69.5, 69.551, 69.5313, 72.25, 71.6, 61.0208, 70.1667, 70.184, 70.0156, 
-                                     72.75, 72.138, 61.3438, 70.5, 70.528, 70.2578, 73, 72.348, 61.5052, 70.6667, 
-                                     70.7, 70.3789, 72.5, 72.524, 61.5859, 71.3333, NA, 70.4395, 72.25, NA, 
-                                     61.6263, 71.6667, NA, 70.4697, 72.125, NA, 61.6465, 71.8333, NA, 70.4849, 
-                                     72.0625, NA, 61.6566, 71.9167, NA, 70.4924, 72.0313, NA), nrow = 21, 
-                                   ncol = 3, byrow = TRUE, dimnames = list(c(2, 3, 4, 6, 8, 12, 16, 24, 
-                                                                             32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048), 
-                                                                           c(10, 11, 12)))
-      decim <- Fid_info[1, "DECIM"]
-      dspfvs <- Fid_info[1, "DSPFVS"]
-      if (!(toString(decim) %in% rownames(group_delay_matrix)))  {
-        stop(paste("Invalid DECIM", decim, "it should be one of", rownames(group_delay_matrix)))
-      }
-      if (!(toString(dspfvs) %in% colnames(group_delay_matrix)))  {
-        stop(paste("Invalid DSPFVS", dspfvs, "it should be one of", colnames(group_delay_matrix)))
-      }
-      group_delay <- group_delay_matrix[toString(decim), toString(dspfvs)]
-      if (is.na(group_delay))  {
-        stop(paste("Invalid DECIM", decim, "for DSPFVS", dspfvs))
-      }
+        # See DetermineBrukerDigitalFilter.m in matNMR MATLAB library
+        group_delay_matrix <- matrix(
+            c(
+                44.75, 46, 46.311, 33.5, 36.5, 36.53, 66.625,
+                48, 47.87, 59.0833, 50.1667, 50.229, 68.5625, 53.25, 53.289, 60.375,
+                69.5, 69.551, 69.5313, 72.25, 71.6, 61.0208, 70.1667, 70.184, 70.0156,
+                72.75, 72.138, 61.3438, 70.5, 70.528, 70.2578, 73, 72.348, 61.5052, 70.6667,
+                70.7, 70.3789, 72.5, 72.524, 61.5859, 71.3333, NA, 70.4395, 72.25, NA,
+                61.6263, 71.6667, NA, 70.4697, 72.125, NA, 61.6465, 71.8333, NA, 70.4849,
+                72.0625, NA, 61.6566, 71.9167, NA, 70.4924, 72.0313, NA
+            ),
+            nrow = 21,
+            ncol = 3, byrow = TRUE, dimnames = list(
+                c(
+                    2, 3, 4, 6, 8, 12, 16, 24,
+                    32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048
+                ),
+                c(10, 11, 12)
+            )
+        )
+        decim <- Fid_info[1, "DECIM"]
+        dspfvs <- Fid_info[1, "DSPFVS"]
+        if (!(toString(decim) %in% rownames(group_delay_matrix))) {
+            stop(paste("Invalid DECIM", decim, "it should be one of", rownames(group_delay_matrix)))
+        }
+        if (!(toString(dspfvs) %in% colnames(group_delay_matrix))) {
+            stop(paste("Invalid DSPFVS", dspfvs, "it should be one of", colnames(group_delay_matrix)))
+        }
+        group_delay <- group_delay_matrix[toString(decim), toString(dspfvs)]
+        if (is.na(group_delay)) {
+            stop(paste("Invalid DECIM", decim, "for DSPFVS", dspfvs))
+        }
     }
     m <- ncol(Fid_data)
-    n <- nrow(Fid_data) 
-    
+    n <- nrow(Fid_data)
+
     # GroupDelayCorrection ----------------------------------------------
-    
+
     # We do the shifting in the Fourier domain because the shift can be non-integer.
     # That way we automatically have the circular behaviour of the shift and the
     # interpolation if it is non-integer.
-    
+
     Spectrum <- t(stats::mvfft(t(Fid_data)))
-    
+
     # Spectrum <- FourierTransform(Fid_data, Fid_info)
-    p <- ceiling(m/2)
+    p <- ceiling(m / 2)
     new_index <- c((p + 1):m, 1:p)
-    Spectrum <- Spectrum[,new_index]
+    Spectrum <- Spectrum[, new_index]
     Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n)
-    
-    Omega <- (0:(m - 1))/m
+
+    Omega <- (0:(m - 1)) / m
     i <- complex(real = 0, imaginary = 1)
-    
-    if (n>1) {
-      Spectrum <- sweep(Spectrum, MARGIN = 2, exp(i * group_delay * 2 * pi * Omega), `*`)
-      Spectrum <- Spectrum[,new_index]
-    }else {
-      Spectrum <- Spectrum* exp(i * group_delay * 2 * pi * Omega)
-      Spectrum <- Spectrum[new_index]
-      Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n)
+
+    if (n > 1) {
+        Spectrum <- sweep(Spectrum, MARGIN = 2, exp(i * group_delay * 2 * pi * Omega), `*`)
+        Spectrum <- Spectrum[, new_index]
+    } else {
+        Spectrum <- Spectrum * exp(i * group_delay * 2 * pi * Omega)
+        Spectrum <- Spectrum[new_index]
+        Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n)
     }
-    
-    
-    Fid_data <- t(stats::mvfft(t(Spectrum), inverse = TRUE))/m
+
+
+    Fid_data <- t(stats::mvfft(t(Spectrum), inverse = TRUE)) / m
     colnames(Fid_data) <- dimension_names[[2]]
     rownames(Fid_data) <- dimension_names[[1]]
-    
+
     # Data finalisation ----------------------------------------------
-    
+
     return(endTreatment("GroupDelayCorrection", begin_info, Fid_data))
-  }
+}
 
 ## ==========================
-# SolventSuppression 
+# SolventSuppression
 ## ==========================
-SolventSuppression <- function(Fid_data, lambda.ss = 1e+06, ptw.ss = TRUE, 
+SolventSuppression <- function(Fid_data, lambda.ss = 1e+06, ptw.ss = TRUE,
                                plotSolvent = F, returnSolvent = F) {
-  
-  # Data initialisation and checks ----------------------------------------------
-  
-  begin_info <- beginTreatment("SolventSuppression", Fid_data)
-  Fid_data <- begin_info[["Signal_data"]]
-  checkArg(ptw.ss, c("bool"))
-  checkArg(lambda.ss, c("num", "pos0"))
-  
-  
-  # difsm function definition for the smoother -----------------------------------
-  
-  if (ptw.ss) {
-    # Use of the function in ptw that smoothes signals with a finite difference
-    # penalty of order 2
-    difsm <- ptw::difsm
-  } else  {
-    # Or manual implementation based on sparse matrices for large data series (cf.
-    # Eilers, 2003. 'A perfect smoother')
-    difsm <- function(y, d = 2, lambda)  {
-      
-      m <- length(y)
-      # Sparse identity matrix m x m
-      E <- Matrix::Diagonal(m)
-      D <- Matrix::diff(E, differences = d)
-      A <- E + lambda.ss * Matrix::t(D) %*% D
-      # base::chol does not take into account that A is sparse and is extremely slow
-      C <- Matrix::chol(A)
-      x <- Matrix::solve(C, Matrix::solve(Matrix::t(C), y))
-      return(as.numeric(x))
+    # Data initialisation and checks ----------------------------------------------
+
+    begin_info <- beginTreatment("SolventSuppression", Fid_data)
+    Fid_data <- begin_info[["Signal_data"]]
+    checkArg(ptw.ss, c("bool"))
+    checkArg(lambda.ss, c("num", "pos0"))
+
+
+    # difsm function definition for the smoother -----------------------------------
+
+    if (ptw.ss) {
+        # Use of the function in ptw that smoothes signals with a finite difference
+        # penalty of order 2
+        difsm <- ptw::difsm
+    } else {
+        # Or manual implementation based on sparse matrices for large data series (cf.
+        # Eilers, 2003. 'A perfect smoother')
+        difsm <- function(y, d = 2, lambda) {
+            m <- length(y)
+            # Sparse identity matrix m x m
+            E <- Matrix::Diagonal(m)
+            D <- Matrix::diff(E, differences = d)
+            A <- E + lambda.ss * Matrix::t(D) %*% D
+            # base::chol does not take into account that A is sparse and is extremely slow
+            C <- Matrix::chol(A)
+            x <- Matrix::solve(C, Matrix::solve(Matrix::t(C), y))
+            return(as.numeric(x))
+        }
     }
-  }
-  
-  # Solvent Suppression ----------------------------------------------
-  
-  n <- dim(Fid_data)[1]
-  if (returnSolvent)  {
-    SolventRe <- Fid_data
-    SolventIm <- Fid_data
-  }
-  for (i in 1:n) {
-    FidRe <- Re(Fid_data[i, ])
-    FidIm <- Im(Fid_data[i, ])
-    solventRe <- difsm(y = FidRe, lambda = lambda.ss)
-    solventIm <- difsm(y = FidIm, lambda = lambda.ss)
-    
-    if (plotSolvent)  {
-      m <- length(FidRe)
-      graphics::plot(1:m, FidRe, type = "l", col = "red")
-      graphics::lines(1:m, solventRe, type = "l", col = "blue")
-      graphics::plot(1:m, FidIm, type = "l", col = "red")
-      graphics::lines(1:m, solventIm, type = "l", col = "blue")
+
+    # Solvent Suppression ----------------------------------------------
+
+    n <- dim(Fid_data)[1]
+    if (returnSolvent) {
+        SolventRe <- Fid_data
+        SolventIm <- Fid_data
     }
-    FidRe <- FidRe - solventRe
-    FidIm <- FidIm - solventIm
-    Fid_data[i, ] <- complex(real = FidRe, imaginary = FidIm)
-    if (returnSolvent) {
-      SolventRe[i, ] <- solventRe
-      SolventIm[i, ] <- solventIm
+    for (i in 1:n) {
+        FidRe <- Re(Fid_data[i, ])
+        FidIm <- Im(Fid_data[i, ])
+        solventRe <- difsm(y = FidRe, lambda = lambda.ss)
+        solventIm <- difsm(y = FidIm, lambda = lambda.ss)
+
+        if (plotSolvent) {
+            m <- length(FidRe)
+            graphics::plot(1:m, FidRe, type = "l", col = "red")
+            graphics::lines(1:m, solventRe, type = "l", col = "blue")
+            graphics::plot(1:m, FidIm, type = "l", col = "red")
+            graphics::lines(1:m, solventIm, type = "l", col = "blue")
+        }
+        FidRe <- FidRe - solventRe
+        FidIm <- FidIm - solventIm
+        Fid_data[i, ] <- complex(real = FidRe, imaginary = FidIm)
+        if (returnSolvent) {
+            SolventRe[i, ] <- solventRe
+            SolventIm[i, ] <- solventIm
+        }
     }
-  }
-  
-  
-  # Data finalisation ----------------------------------------------
-  
-  Fid_data <- endTreatment("SolventSuppression", begin_info, Fid_data)
-  if (returnSolvent) {
-    return(list(Fid_data = Fid_data, SolventRe = SolventRe, SolventIm = SolventIm))
-  } else {
-    return(Fid_data)
-  }
+
+
+    # Data finalisation ----------------------------------------------
+
+    Fid_data <- endTreatment("SolventSuppression", begin_info, Fid_data)
+    if (returnSolvent) {
+        return(list(Fid_data = Fid_data, SolventRe = SolventRe, SolventIm = SolventIm))
+    } else {
+        return(Fid_data)
+    }
 }
 
 
 ## ==========================
-# Apodization 
+# Apodization
 # =============================
-Apodization <- function(Fid_data, Fid_info = NULL, DT = NULL, 
-                        type.apod = c("exp","cos2", "blockexp", "blockcos2", 
-                                      "gauss", "hanning", "hamming"), phase = 0, rectRatio = 1/2, 
+Apodization <- function(Fid_data, Fid_info = NULL, DT = NULL,
+                        type.apod = c(
+                            "exp", "cos2", "blockexp", "blockcos2",
+                            "gauss", "hanning", "hamming"
+                        ), phase = 0, rectRatio = 1 / 2,
                         gaussLB = 1, expLB = 1, plotWindow = F, returnFactor = F) {
-  
-  # Data initialisation and checks ----------------------------------------------
-  begin_info <- beginTreatment("Apodization", Fid_data, Fid_info)
-  Fid_data <- begin_info[["Signal_data"]]
-  Fid_info <- begin_info[["Signal_info"]]
-  # Data check
-  type.apod <- match.arg(type.apod)
-  checkArg(DT, c("num", "pos"), can.be.null = TRUE)
-  checkArg(phase, c("num"))
-  
-  # Apodization ----------------------------------------------
-  DT <- getArg(DT, Fid_info, "DT")  # Dwell Time
-  m <- ncol(Fid_data)
-  t <- (1:m) * DT  # Time
-  rectSize <- ceiling(rectRatio * m)
-  gaussLB <- (gaussLB/(sqrt(8 * log(2))))
-  # Define the types of apodization:
-  switch(type.apod, exp = {
-    # exponential
-    Factor <- exp(-expLB * t)
-  }, cos2 = {
-    # cos^2
-    c <- cos((1:m) * pi/(2 * m) - phase * pi/2)
-    Factor <- c * c
-  }, blockexp = {
-    # block and exponential
-    Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize))
-    # | rectSize | 1 ___________ | \ 0 \____
-    Factor[(rectSize + 1):m] <- exp(-expLB * t[1:(m - rectSize)])
-  }, blockcos2 = {
-    # block and cos^2
-    Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize))
-    c <- cos((1:(m - rectSize)) * pi/(2 * (m - rectSize)))
-    Factor[(rectSize + 1):m] <- c * c
-  }, gauss = {
-    # gaussian
-    Factor <- exp(-(gaussLB * t)^2/2)
-    Factor <- Factor/max(Factor)
-  }, hanning = {
-    # Hanning
-    Factor <- 0.5 + 0.5 * cos((1:m) * pi/m - phase * pi)
-  }, hamming = {
-    # Hamming
-    Factor <- 0.54 + 0.46 * cos((1:m) * pi/m - phase * pi)
-  })
-  if (plotWindow) {
-    graphics::plot(1:m, Factor, "l")
-    # dev.off() # device independent, it is the responsability of the
-    # caller to do it
-  }
-  # Apply the apodization factor on the spectra
-  Fid_data <- sweep(Fid_data, MARGIN = 2, Factor, `*`)
-  
-  # Data finalisation ----------------------------------------------
-  Fid_data <- endTreatment("Apodization", begin_info, Fid_data)
-  if (returnFactor) {
-    return(list(Fid_data = Fid_data, Factor = Factor))
-  } else {
-    return(Fid_data)
-  }
+    # Data initialisation and checks ----------------------------------------------
+    begin_info <- beginTreatment("Apodization", Fid_data, Fid_info)
+    Fid_data <- begin_info[["Signal_data"]]
+    Fid_info <- begin_info[["Signal_info"]]
+    # Data check
+    type.apod <- match.arg(type.apod)
+    checkArg(DT, c("num", "pos"), can.be.null = TRUE)
+    checkArg(phase, c("num"))
+
+    # Apodization ----------------------------------------------
+    DT <- getArg(DT, Fid_info, "DT") # Dwell Time
+    m <- ncol(Fid_data)
+    t <- (1:m) * DT # Time
+    rectSize <- ceiling(rectRatio * m)
+    gaussLB <- (gaussLB / (sqrt(8 * log(2))))
+    # Define the types of apodization:
+    switch(type.apod,
+        exp = {
+            # exponential
+            Factor <- exp(-expLB * t)
+        },
+        cos2 = {
+            # cos^2
+            c <- cos((1:m) * pi / (2 * m) - phase * pi / 2)
+            Factor <- c * c
+        },
+        blockexp = {
+            # block and exponential
+            Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize))
+            # | rectSize | 1 ___________ | \ 0 \____
+            Factor[(rectSize + 1):m] <- exp(-expLB * t[1:(m - rectSize)])
+        },
+        blockcos2 = {
+            # block and cos^2
+            Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize))
+            c <- cos((1:(m - rectSize)) * pi / (2 * (m - rectSize)))
+            Factor[(rectSize + 1):m] <- c * c
+        },
+        gauss = {
+            # gaussian
+            Factor <- exp(-(gaussLB * t)^2 / 2)
+            Factor <- Factor / max(Factor)
+        },
+        hanning = {
+            # Hanning
+            Factor <- 0.5 + 0.5 * cos((1:m) * pi / m - phase * pi)
+        },
+        hamming = {
+            # Hamming
+            Factor <- 0.54 + 0.46 * cos((1:m) * pi / m - phase * pi)
+        }
+    )
+    if (plotWindow) {
+        graphics::plot(1:m, Factor, "l")
+        # dev.off() # device independent, it is the responsability of the
+        # caller to do it
+    }
+    # Apply the apodization factor on the spectra
+    Fid_data <- sweep(Fid_data, MARGIN = 2, Factor, `*`)
+
+    # Data finalisation ----------------------------------------------
+    Fid_data <- endTreatment("Apodization", begin_info, Fid_data)
+    if (returnFactor) {
+        return(list(Fid_data = Fid_data, Factor = Factor))
+    } else {
+        return(Fid_data)
+    }
 }
 
 
 ## ====================================================
-# FourierTransform           
+# FourierTransform
 ## ====================================================
 
 
-# fftshift1D2D 
+# fftshift1D2D
 fftshift1D2D <- function(x) {
-  vec <- F
-  if (is.vector(x)) {
-    x <- vec2mat(x)
-    vec <- T
-  }
-  m <- dim(x)[2]
-  p <- ceiling(m/2)
-  new_index <- c((p + 1):m, 1:p)
-  y <- x[, new_index, drop = vec]
+    vec <- F
+    if (is.vector(x)) {
+        x <- vec2mat(x)
+        vec <- T
+    }
+    m <- dim(x)[2]
+    p <- ceiling(m / 2)
+    new_index <- c((p + 1):m, 1:p)
+    y <- x[, new_index, drop = vec]
 }
 
 # FourierTransform
 FourierTransform <- function(Fid_data, Fid_info = NULL, SW_h = NULL, SW = NULL, O1 = NULL, reverse.axis = TRUE) {
-  
-  # Data initialisation and checks ----------------------------------------------
-  begin_info <- beginTreatment("FourierTransform", Fid_data, Fid_info)
-  Fid_data <- begin_info[["Signal_data"]]
-  Fid_info <- begin_info[["Signal_info"]]
-  
-  m <- ncol(Fid_data)
-  n <- nrow(Fid_data)
-  
-  if (is.null(SW_h)) {
-    SW_h <- getArg(SW_h, Fid_info, "SW_h")
-  }
-  
-  if (is.null(SW)) {
-    SW <- getArg(SW, Fid_info, "SW")  # Sweep Width in ppm (semi frequency scale in ppm)
-  }
-  
-  
-  if (is.null(O1)) {
-    O1 <- getArg(O1, Fid_info, "O1")
-  }
-  
-  
-  checkArg(reverse.axis, c("bool"))
-  
-  # Fourier Transformation ----------------------------------------------
-  # mvfft does the unnormalized fourier transform (see ?mvfft), so we need divide
-  # by m.  It does not matter a lot in our case since the spectrum will be
-  # normalized.
-  
-  # FT
-  RawSpect_data <- fftshift1D2D(t(stats::mvfft(t(Fid_data))))
-  # recover the frequencies values
-  f <- ((0:(m - 1)) - floor(m/2)) * Fid_info[1, "SW_h"]/(m-1)
-  
-  if(reverse.axis == TRUE) {
-    revind <- rev(1:m)
-    RawSpect_data <- RawSpect_data[,revind] # reverse the spectrum
-  }
-  
-  RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = m)
-  colnames(RawSpect_data) <- f
-  rownames(RawSpect_data) <- rownames(Fid_data)
-  
-  # PPM conversion ----------------------------------------------
-  
-  # The Sweep Width has to be the same since the column names are the same
-  
-  ppmInterval <- SW/(m-1)
-  
-  O1index = round((m+1)/2+O1*(m - 1) / SW_h)
-  
-  end <- O1index - m
-  start <- O1index -1
-  ppmScale <- (start:end) * ppmInterval
-  RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol =  -(end - start) + 1, dimnames = 
-                            list(rownames(RawSpect_data), ppmScale))
-  
-  
-  # Data finalisation ----------------------------------------------
-  return(endTreatment("FourierTransform", begin_info, RawSpect_data))
+    # Data initialisation and checks ----------------------------------------------
+    begin_info <- beginTreatment("FourierTransform", Fid_data, Fid_info)
+    Fid_data <- begin_info[["Signal_data"]]
+    Fid_info <- begin_info[["Signal_info"]]
+
+    m <- ncol(Fid_data)
+    n <- nrow(Fid_data)
+
+    if (is.null(SW_h)) {
+        SW_h <- getArg(SW_h, Fid_info, "SW_h")
+    }
+
+    if (is.null(SW)) {
+        SW <- getArg(SW, Fid_info, "SW") # Sweep Width in ppm (semi frequency scale in ppm)
+    }
+
+
+    if (is.null(O1)) {
+        O1 <- getArg(O1, Fid_info, "O1")
+    }
+
+
+    checkArg(reverse.axis, c("bool"))
+
+    # Fourier Transformation ----------------------------------------------
+    # mvfft does the unnormalized fourier transform (see ?mvfft), so we need divide
+    # by m.  It does not matter a lot in our case since the spectrum will be
+    # normalized.
+
+    # FT
+    RawSpect_data <- fftshift1D2D(t(stats::mvfft(t(Fid_data))))
+    # recover the frequencies values
+    f <- ((0:(m - 1)) - floor(m / 2)) * Fid_info[1, "SW_h"] / (m - 1)
+
+    if (reverse.axis == TRUE) {
+        revind <- rev(1:m)
+        RawSpect_data <- RawSpect_data[, revind] # reverse the spectrum
+    }
+
+    RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = m)
+    colnames(RawSpect_data) <- f
+    rownames(RawSpect_data) <- rownames(Fid_data)
+
+    # PPM conversion ----------------------------------------------
+
+    # The Sweep Width has to be the same since the column names are the same
+
+    ppmInterval <- SW / (m - 1)
+
+    O1index <- round((m + 1) / 2 + O1 * (m - 1) / SW_h)
+
+    end <- O1index - m
+    start <- O1index - 1
+    ppmScale <- (start:end) * ppmInterval
+    RawSpect_data <- matrix(RawSpect_data,
+        nrow = n, ncol = -(end - start) + 1, dimnames =
+            list(rownames(RawSpect_data), ppmScale)
+    )
+
+
+    # Data finalisation ----------------------------------------------
+    return(endTreatment("FourierTransform", begin_info, RawSpect_data))
 }
 
 ## ====================================================
-#   InternalReferencing       
+#   InternalReferencing
 ## ====================================================
 
-InternalReferencing <- function(Spectrum_data, Fid_info, method = c("max", "thres"), 
-                                range = c("nearvalue", "all", "window"), ppm.value = 0, 
-                                direction = "left", shiftHandling = c("zerofilling", "cut", 
-                                                                      "NAfilling", "circular"), c = 2, pc = 0.02, fromto.RC = NULL,
+InternalReferencing <- function(Spectrum_data, Fid_info, method = c("max", "thres"),
+                                range = c("nearvalue", "all", "window"), ppm.value = 0,
+                                direction = "left", shiftHandling = c(
+                                    "zerofilling", "cut",
+                                    "NAfilling", "circular"
+                                ), c = 2, pc = 0.02, fromto.RC = NULL,
                                 ppm.ir = TRUE, rowindex_graph = NULL) {
-  
-  
-  
-  # Data initialisation and checks ----------------------------------------------
-  
-  begin_info <- beginTreatment("InternalReferencing", Spectrum_data, Fid_info)
-  Spectrum_data <- begin_info[["Signal_data"]]
-  Fid_info <- begin_info[["Signal_info"]]
-  
-  
-  ######## Check input arguments
-  
-  range <- match.arg(range)
-  shiftHandling <- match.arg(shiftHandling)
-  method <- match.arg(method)
-  plots <- NULL
-  
-  checkArg(ppm.ir, c("bool"))
-  checkArg(unlist(fromto.RC), c("num"), can.be.null = TRUE)
-  checkArg(pc, c("num"))
-  checkArg(ppm.value, c("num"))
-  checkArg(rowindex_graph, "num", can.be.null = TRUE)
-  
-  # fromto.RC : if range == "window", 
-  # fromto.RC defines the spectral window where to search for the peak
-  if (!is.null(fromto.RC)) {
-    diff <- diff(unlist(fromto.RC))[1:length(diff(unlist(fromto.RC)))%%2 !=0]
-    for (i in 1:length(diff)) {
-      if (diff[i] >= 0)  {
-        fromto <- c(fromto.RC[[i]][2], fromto.RC[[i]][1])
-        fromto.RC[[i]] <- fromto
-      }
-    }
-  }
-  
-  
-  # findTMSPpeak function ----------------------------------------------
-  # If method == "tresh", findTMSPpeak will find the position of the first 
-  # peak (from left or right) which is higher than a predefined threshold 
-  # and is computed as: c*(cumulated_mean/cumulated_sd)
-  findTMSPpeak <- function(ft, c = 2, direction = "left") {
-    ft <- Re(ft)  # extraction de la partie réelle
-    N <- length(ft)
-    if (direction == "left") {
-      newindex <- rev(1:N)
-      ft <- rev(ft)
-    }
-    thres <- 99999
-    i <- 1000  # Start at point 1000 to find the peak
-    vect <- ft[1:i]
-    
-    while (vect[i] <= (c * thres)) {
-      cumsd <- stats::sd(vect)
-      cummean <- mean(vect)
-      thres <- cummean + 3 * cumsd
-      i <- i + 1
-      vect <- ft[1:i]
+    # Data initialisation and checks ----------------------------------------------
+
+    begin_info <- beginTreatment("InternalReferencing", Spectrum_data, Fid_info)
+    Spectrum_data <- begin_info[["Signal_data"]]
+    Fid_info <- begin_info[["Signal_info"]]
+
+
+    ######## Check input arguments
+
+    range <- match.arg(range)
+    shiftHandling <- match.arg(shiftHandling)
+    method <- match.arg(method)
+    plots <- NULL
+
+    checkArg(ppm.ir, c("bool"))
+    checkArg(unlist(fromto.RC), c("num"), can.be.null = TRUE)
+    checkArg(pc, c("num"))
+    checkArg(ppm.value, c("num"))
+    checkArg(rowindex_graph, "num", can.be.null = TRUE)
+
+    # fromto.RC : if range == "window",
+    # fromto.RC defines the spectral window where to search for the peak
+    if (!is.null(fromto.RC)) {
+        diff <- diff(unlist(fromto.RC))[1:length(diff(unlist(fromto.RC))) %% 2 != 0]
+        for (i in 1:length(diff)) {
+            if (diff[i] >= 0) {
+                fromto <- c(fromto.RC[[i]][2], fromto.RC[[i]][1])
+                fromto.RC[[i]] <- fromto
+            }
+        }
     }
-    if (direction == "left") {
-      v <- newindex[i]
-    } else {v <- i}
-    
-    if (is.na(v))  {
-      warning("No peak found, need to lower the threshold.")
-      return(NA)
-    } else  {
-      # recherche dans les 1% de points suivants du max trouve pour etre au sommet du
-      # pic
-      d <- which.max(ft[v:(v + N * 0.01)])
-      new.peak <- v + d - 1  # nouveau pic du TMSP si d > 0
-      
-      if (names(which.max(ft[v:(v + N * 0.01)])) != names(which.max(ft[v:(v + N * 0.03)])))   {
-        # recherche dans les 3% de points suivants du max trouve pour eviter un faux
-        # positif
-        warning("the TMSP peak might be located further away, increase the threshold to check.")
-      }
-      return(new.peak)
+
+
+    # findTMSPpeak function ----------------------------------------------
+    # If method == "tresh", findTMSPpeak will find the position of the first
+    # peak (from left or right) which is higher than a predefined threshold
+    # and is computed as: c*(cumulated_mean/cumulated_sd)
+    findTMSPpeak <- function(ft, c = 2, direction = "left") {
+        ft <- Re(ft) # extraction de la partie réelle
+        N <- length(ft)
+        if (direction == "left") {
+            newindex <- rev(1:N)
+            ft <- rev(ft)
+        }
+        thres <- 99999
+        i <- 1000 # Start at point 1000 to find the peak
+        vect <- ft[1:i]
+
+        while (vect[i] <= (c * thres)) {
+            cumsd <- stats::sd(vect)
+            cummean <- mean(vect)
+            thres <- cummean + 3 * cumsd
+            i <- i + 1
+            vect <- ft[1:i]
+        }
+        if (direction == "left") {
+            v <- newindex[i]
+        } else {
+            v <- i
+        }
+
+        if (is.na(v)) {
+            warning("No peak found, need to lower the threshold.")
+            return(NA)
+        } else {
+            # recherche dans les 1% de points suivants du max trouve pour etre au sommet du
+            # pic
+            d <- which.max(ft[v:(v + N * 0.01)])
+            new.peak <- v + d - 1 # nouveau pic du TMSP si d > 0
+
+            if (names(which.max(ft[v:(v + N * 0.01)])) != names(which.max(ft[v:(v + N * 0.03)]))) {
+                # recherche dans les 3% de points suivants du max trouve pour eviter un faux
+                # positif
+                warning("the TMSP peak might be located further away, increase the threshold to check.")
+            }
+            return(new.peak)
+        }
     }
-  }
-  
-  
-  # Define the search zone  ----------------------------------------
-  
-  n <- nrow(Spectrum_data)
-  m <- ncol(Spectrum_data)
-  
-  # The Sweep Width (SW) has to be the same since the column names are the same
-  SW <- Fid_info[1, "SW"]  # Sweep Width in ppm 
-  ppmInterval <- SW/(m-1)  # size of a ppm interval
-  
-  # range: How the search zone is defined ("all", "nearvalue" or "window")
-  if (range == "all") {
-    
-    Data <- Spectrum_data
-    
-  } else { # range = "nearvalue" or "window"
-    # Need to define colindex (column indexes) to apply indexInterval on it
-    
-    if (range == "nearvalue")  {
-      
-      fromto.RC <- list(c(-(SW * pc)/2 + ppm.value, (SW * pc)/2 + ppm.value))  # automatic fromto values in ppm
-      colindex <- as.numeric(colnames(Spectrum_data))
-      
-    } else {
-      # range == "window"
-      # fromto.RC is already user-defined
-      if (ppm.ir == TRUE)   {
-        colindex <- as.numeric(colnames(Spectrum_data))
-      } else   {
-        colindex <- 1:m
-      }
+
+
+    # Define the search zone  ----------------------------------------
+
+    n <- nrow(Spectrum_data)
+    m <- ncol(Spectrum_data)
+
+    # The Sweep Width (SW) has to be the same since the column names are the same
+    SW <- Fid_info[1, "SW"] # Sweep Width in ppm
+    ppmInterval <- SW / (m - 1) # size of a ppm interval
+
+    # range: How the search zone is defined ("all", "nearvalue" or "window")
+    if (range == "all") {
+        Data <- Spectrum_data
+    } else { # range = "nearvalue" or "window"
+        # Need to define colindex (column indexes) to apply indexInterval on it
+
+        if (range == "nearvalue") {
+            fromto.RC <- list(c(-(SW * pc) / 2 + ppm.value, (SW * pc) / 2 + ppm.value)) # automatic fromto values in ppm
+            colindex <- as.numeric(colnames(Spectrum_data))
+        } else {
+            # range == "window"
+            # fromto.RC is already user-defined
+            if (ppm.ir == TRUE) {
+                colindex <- as.numeric(colnames(Spectrum_data))
+            } else {
+                colindex <- 1:m
+            }
+        }
+
+        # index intervals taking into account the different elements in the list fromto.RC
+        Int <- vector("list", length(fromto.RC))
+        for (i in 1:length(fromto.RC)) {
+            Int[[i]] <- indexInterval(colindex,
+                from = fromto.RC[[i]][1],
+                to = fromto.RC[[i]][2], inclusive = TRUE
+            )
+        }
+
+        # define Data as the cropped spectrum including the index intervals
+        # outside the research zone, the intensities are set to the minimal
+        # intensity of the research zone
+
+        if (n > 1) {
+            Data <- apply(Re(Spectrum_data[, unlist(Int)]), 1, function(x) rep(min(x), m))
+            Data <- t(Data)
+            Data[, unlist(Int)] <- Re(Spectrum_data[, unlist(Int)])
+        } else {
+            Data <- rep(min(Re(Spectrum_data)), m)
+            Data[unlist(Int)] <- Re(Spectrum_data[unlist(Int)])
+        }
     }
-    
-    # index intervals taking into account the different elements in the list fromto.RC
-    Int <- vector("list", length(fromto.RC)) 
-    for (i in 1:length(fromto.RC))  {
-      Int[[i]] <- indexInterval(colindex, from = fromto.RC[[i]][1], 
-                                to = fromto.RC[[i]][2], inclusive = TRUE)
-    }
-    
-    # define Data as the cropped spectrum including the index intervals
-    # outside the research zone, the intensities are set to the minimal 
-    # intensity of the research zone
-    
-    if (n > 1){
-      Data <- apply(Re(Spectrum_data[,unlist(Int)]),1, function(x) rep(min(x), m))
-      Data <- t(Data)
-      Data[,unlist(Int)] <- Re(Spectrum_data[,unlist(Int)])
-    } else {
-      Data <- rep(min(Re(Spectrum_data)) ,m)
-      Data[unlist(Int)] <- Re(Spectrum_data[unlist(Int)])
+
+
+    # Apply the peak location search method ('thres' or 'max') on spectra
+    # -----------------------------------------------------------------------
+
+    if (method == "thres") {
+        TMSPpeaks <- apply(Data, 1, findTMSPpeak, c = c, direction = direction)
+    } else { # method == "max
+        TMSPpeaks <- apply(Re(Data), 1, which.max)
     }
-    
-  }
-  
-  
-  # Apply the peak location search method ('thres' or 'max') on spectra
-  # -----------------------------------------------------------------------
-  
-  if (method == "thres") {
-    TMSPpeaks <- apply(Data, 1, findTMSPpeak, c = c, direction = direction)
-  } else { # method == "max
-    TMSPpeaks <- apply(Re(Data), 1, which.max)
-  }
-  
-  
-  # Shift spectra according to the TMSPpeaks found --------------------------------
-  # Depends on the shiftHandling
-  
-  # TMSPpeaks is a column index
-  maxpeak <- max(TMSPpeaks) # max accross spectra
-  minpeak <- min(TMSPpeaks) # min accross spectra
-  
-  
-  if (shiftHandling %in% c("zerofilling", "NAfilling",  "cut")) {
-    fill <- NA
-    if (shiftHandling == "zerofilling")  {
-      fill <- 0
-    }
-    
-    start <-  maxpeak - 1
-    end <- minpeak - m
-    
-    # ppm values of each interval for the whole spectral range of the spectral matrix
-    ppmScale <- (start:end) * ppmInterval
-    
-    # check if ppm.value is in the ppmScale interval
-    if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
-      warning("ppm.value = ", ppm.value, " is not in the ppm interval [", 
-              round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0")
-      ppm.value = 0
-    }
-    
-    # if ppm.value != 0, ppmScale is adapted
-    ppmScale <- ppmScale + ppm.value
-    
-    # create the spectral matrix with realigned spectra
-    Spectrum_data_calib <- matrix(fill, nrow = n, ncol =  -(end - start) + 1, 
-                                  dimnames = list(rownames(Spectrum_data), ppmScale))
-    
-    # fills in Spectrum_data_calib with shifted spectra
-    for (i in 1:n)  {
-      shift <- (1 - TMSPpeaks[i]) + start
-      Spectrum_data_calib[i, (1 + shift):(m + shift)] <- Spectrum_data[i, ]
-    }
-    
-    if (shiftHandling == "cut")  {
-      Spectrum_data_calib = as.matrix(stats::na.omit(t(Spectrum_data_calib)))
-      Spectrum_data_calib = t(Spectrum_data_calib)
-      base::attr(Spectrum_data_calib, "na.action") <- NULL
-    }
-    
-    
-  } else {
-    # circular
-    start <- 1 - maxpeak
-    end <- m - maxpeak
-    
-    ppmScale <- (start:end) * ppmInterval
-    
-    # check if ppm.value in is the ppmScale interval
-    if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
-      warning("ppm.value = ", ppm.value, " is not in the ppm interval [", 
-              round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0")
-      ppm.value = 0
+
+
+    # Shift spectra according to the TMSPpeaks found --------------------------------
+    # Depends on the shiftHandling
+
+    # TMSPpeaks is a column index
+    maxpeak <- max(TMSPpeaks) # max accross spectra
+    minpeak <- min(TMSPpeaks) # min accross spectra
+
+
+    if (shiftHandling %in% c("zerofilling", "NAfilling", "cut")) {
+        fill <- NA
+        if (shiftHandling == "zerofilling") {
+            fill <- 0
+        }
+
+        start <- maxpeak - 1
+        end <- minpeak - m
+
+        # ppm values of each interval for the whole spectral range of the spectral matrix
+        ppmScale <- (start:end) * ppmInterval
+
+        # check if ppm.value is in the ppmScale interval
+        if (ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
+            warning(
+                "ppm.value = ", ppm.value, " is not in the ppm interval [",
+                round(min(ppmScale), 2), ",", round(max(ppmScale), 2), "], and is set to its default ppm.value 0"
+            )
+            ppm.value <- 0
+        }
+
+        # if ppm.value != 0, ppmScale is adapted
+        ppmScale <- ppmScale + ppm.value
+
+        # create the spectral matrix with realigned spectra
+        Spectrum_data_calib <- matrix(fill,
+            nrow = n, ncol = -(end - start) + 1,
+            dimnames = list(rownames(Spectrum_data), ppmScale)
+        )
+
+        # fills in Spectrum_data_calib with shifted spectra
+        for (i in 1:n) {
+            shift <- (1 - TMSPpeaks[i]) + start
+            Spectrum_data_calib[i, (1 + shift):(m + shift)] <- Spectrum_data[i, ]
+        }
+
+        if (shiftHandling == "cut") {
+            Spectrum_data_calib <- as.matrix(stats::na.omit(t(Spectrum_data_calib)))
+            Spectrum_data_calib <- t(Spectrum_data_calib)
+            base::attr(Spectrum_data_calib, "na.action") <- NULL
+        }
+    } else {
+        # circular
+        start <- 1 - maxpeak
+        end <- m - maxpeak
+
+        ppmScale <- (start:end) * ppmInterval
+
+        # check if ppm.value in is the ppmScale interval
+        if (ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
+            warning(
+                "ppm.value = ", ppm.value, " is not in the ppm interval [",
+                round(min(ppmScale), 2), ",", round(max(ppmScale), 2), "], and is set to its default ppm.value 0"
+            )
+            ppm.value <- 0
+        }
+
+        # if ppm.value != 0, ppmScale is adapted
+        ppmScale <- ppmScale + ppm.value
+
+        # create the spectral matrix with realigned spectra
+        Spectrum_data_calib <- matrix(
+            nrow = n, ncol = end - start + 1,
+            dimnames = list(rownames(Spectrum_data), ppmScale)
+        )
+
+        # fills in Spectrum_data_calib with shifted spectra
+        for (i in 1:n) {
+            shift <- (maxpeak - TMSPpeaks[i])
+            Spectrum_data_calib[i, (1 + shift):m] <- Spectrum_data[i, 1:(m - shift)]
+            if (shift > 0) {
+                Spectrum_data_calib[i, 1:shift] <- Spectrum_data[i, (m - shift + 1):m]
+            }
+        }
     }
-    
-    # if ppm.value != 0, ppmScale is adapted
-    ppmScale <- ppmScale + ppm.value
-    
-    # create the spectral matrix with realigned spectra
-    Spectrum_data_calib <- matrix(nrow=n, ncol=end-start+1,
-                                  dimnames=list(rownames(Spectrum_data), ppmScale))
-    
-    # fills in Spectrum_data_calib with shifted spectra
-    for (i in 1:n) {
-      shift <- (maxpeak-TMSPpeaks[i])
-      Spectrum_data_calib[i,(1+shift):m] <- Spectrum_data[i,1:(m-shift)]
-      if (shift > 0) {
-        Spectrum_data_calib[i,1:shift] <- Spectrum_data[i,(m-shift+1):m]
-      }
-    }
-  }
-  
-  
-  
-  
-  # Plot of the spectra (depending on rowindex_graph) ---------------------------------------------------
-  
-  ppm = xstart = value = xend = Legend = NULL # only for R CMD check
-  
-  
-  # with the search zone for TMSP and the location of the peaks just found
-  if (!is.null(rowindex_graph)) {
-    
-    if (range == "window")  {
-      if (ppm.ir == TRUE)   {
-        fromto <- fromto.RC
-      } else  {
-        fromto <- list()
-        idcol <- as.numeric(colnames(Spectrum_data))
-        for (i in 1:length(fromto.RC)) {
-          fromto[[i]] <- as.numeric(colnames(Spectrum_data))[fromto.RC[[i]]]
+
+
+
+
+    # Plot of the spectra (depending on rowindex_graph) ---------------------------------------------------
+
+    ppm <- xstart <- value <- xend <- Legend <- NULL # only for R CMD check
+
+
+    # with the search zone for TMSP and the location of the peaks just found
+    if (!is.null(rowindex_graph)) {
+        if (range == "window") {
+            if (ppm.ir == TRUE) {
+                fromto <- fromto.RC
+            } else {
+                fromto <- list()
+                idcol <- as.numeric(colnames(Spectrum_data))
+                for (i in 1:length(fromto.RC)) {
+                    fromto[[i]] <- as.numeric(colnames(Spectrum_data))[fromto.RC[[i]]]
+                }
+            }
+        } else {
+            fromto <- fromto.RC
         }
-      }
-    } else {
-      fromto <- fromto.RC
+
+        # TMSPloc in ppm
+        TMSPloc <- as.numeric(colnames(Spectrum_data))[TMSPpeaks[rowindex_graph]]
+
+        # num plot per window
+        num.stacked <- 6
+
+        # rectanglar bands of color for the search zone
+        rects <- data.frame(
+            xstart = sapply(fromto, function(x) x[[1]]),
+            xend = sapply(fromto, function(x) x[[2]]),
+            Legend = "Peak search zone and location"
+        )
+
+        # vlines for TMSP peak
+        addlines <- data.frame(rowname = rownames(Spectrum_data)[rowindex_graph], TMSPloc)
+
+        nn <- length(rowindex_graph)
+        i <- 1
+        j <- 1
+        plots <- vector(mode = "list", length = ceiling(nn / num.stacked))
+
+        while (i <= nn) {
+            last <- min(i + num.stacked - 1, nn)
+
+            melted <- reshape2::melt(Re(Spectrum_data[i:last, ]),
+                varnames = c("rowname", "ppm")
+            )
+
+            plots[[j]] <- ggplot2::ggplot() +
+                ggplot2::theme_bw() +
+                ggplot2::geom_line(
+                    data = melted,
+                    ggplot2::aes(x = ppm, y = value)
+                ) +
+                ggplot2::geom_rect(data = rects, ggplot2::aes(
+                    xmin = xstart, xmax = xend,
+                    ymin = -Inf, ymax = Inf, fill = Legend
+                ), alpha = 0.4) +
+                ggplot2::facet_grid(rowname ~ ., scales = "free_y") +
+                ggplot2::theme(legend.position = "none") +
+                ggplot2::geom_vline(
+                    data = addlines, ggplot2::aes(xintercept = TMSPloc),
+                    color = "red", show.legend = TRUE
+                ) +
+                ggplot2::ggtitle("Peak search zone and location") +
+                ggplot2::theme(legend.position = "top", legend.text = ggplot2::element_text())
+
+
+
+            if ((melted[1, "ppm"] - melted[(dim(melted)[1]), "ppm"]) > 0) {
+                plots[[j]] <- plots[[j]] + ggplot2::scale_x_reverse()
+            }
+
+            i <- last + 1
+            j <- j + 1
+        }
+
+        plots
     }
-    
-    # TMSPloc in ppm
-    TMSPloc <- as.numeric(colnames(Spectrum_data))[TMSPpeaks[rowindex_graph]]
-    
-    # num plot per window
-    num.stacked <- 6
-    
-    # rectanglar bands of color for the search zone
-    rects <- data.frame(xstart = sapply(fromto, function(x) x[[1]]), 
-                        xend = sapply(fromto, function(x) x[[2]]), 
-                        Legend = "Peak search zone and location")
-    
-    # vlines for TMSP peak
-    addlines <- data.frame(rowname = rownames(Spectrum_data)[rowindex_graph],TMSPloc)
-    
-    nn <- length(rowindex_graph)
-    i <- 1
-    j <- 1
-    plots <- vector(mode = "list", length = ceiling(nn/num.stacked))
-    
-    while (i <= nn) {
-      
-      last <- min(i + num.stacked - 1, nn)
-      
-      melted <- reshape2::melt(Re(Spectrum_data[i:last, ]), 
-                               varnames = c("rowname", "ppm"))
-      
-      plots[[j]] <- ggplot2::ggplot() + ggplot2::theme_bw() + 
-        ggplot2::geom_line(data = melted, 
-                           ggplot2::aes(x = ppm, y = value)) + 
-        ggplot2::geom_rect(data = rects, ggplot2::aes(xmin = xstart, xmax = xend, 
-                                                      ymin = -Inf, ymax = Inf, fill = Legend), alpha = 0.4) + 
-        ggplot2::facet_grid(rowname ~ ., scales = "free_y") + 
-        ggplot2::theme(legend.position = "none") + 
-        ggplot2::geom_vline(data = addlines, ggplot2::aes(xintercept = TMSPloc), 
-                            color = "red", show.legend = TRUE) + 
-        ggplot2::ggtitle("Peak search zone and location") + 
-        ggplot2::theme(legend.position = "top", legend.text = ggplot2::element_text())
-      
-      
-      
-      if ((melted[1, "ppm"] - melted[(dim(melted)[1]), "ppm"]) > 0) {
-        plots[[j]] <- plots[[j]] + ggplot2::scale_x_reverse()
-      }
-      
-      i <- last + 1
-      j <- j + 1
+
+
+    # Return the results ----------------------------------------------
+    Spectrum_data <- endTreatment("InternalReferencing", begin_info, Spectrum_data_calib)
+
+    if (is.null(plots)) {
+        return(Spectrum_data)
+    } else {
+        return(list(Spectrum_data = Spectrum_data, plots = plots))
     }
-    
-    plots
-  }
-  
-  
-  # Return the results ----------------------------------------------
-  Spectrum_data <- endTreatment("InternalReferencing", begin_info, Spectrum_data_calib)
-  
-  if (is.null(plots)) {
-    return(Spectrum_data)
-  } else {
-    return(list(Spectrum_data = Spectrum_data, plots = plots))
-  }
-  
 }
 
 ## ====================================================
-# ZeroOrderPhaseCorrection       
+# ZeroOrderPhaseCorrection
 ## ====================================================
 
-ZeroOrderPhaseCorrection <- function(Spectrum_data, type.zopc = c("rms", "manual", "max"), 
-                                     plot_rms = NULL, returnAngle = FALSE, createWindow = TRUE, 
-                                     angle = NULL, plot_spectra = FALSE,  
-                                     ppm.zopc = TRUE, exclude.zopc = list(c(5.1,4.5))) {
-  
-  
-  # Data initialisation and checks ----------------------------------------------
-  
-  # Entry arguments definition:
-  # plot_rms : graph of rms criterion returnAngle : if TRUE, returns avector of
-  # optimal angles createWindow : for plot_rms plots angle : If angle is not NULL,
-  # spectra are rotated according to the angle vector values
-  # plot_spectra : if TRUE, plot rotated spectra  
-  
-  
-  
-  begin_info <- beginTreatment("ZeroOrderPhaseCorrection", Spectrum_data)
-  Spectrum_data <- begin_info[["Signal_data"]]
-  n <- nrow(Spectrum_data)
-  m <- ncol(Spectrum_data)
-  
-  rnames <- rownames(Spectrum_data)
-  
-  # Check input arguments
-  type.zopc <- match.arg(type.zopc)
-  checkArg(ppm.zopc, c("bool"))
-  checkArg(unlist(exclude.zopc), c("num"), can.be.null = TRUE)
-  
-  
-  # type.zopc in c("max", "rms") -----------------------------------------
-  if (type.zopc %in% c("max", "rms")) {
-    # angle is found by optimization
-    
-    # rms function to be optimised
-    rms <- function(ang, y, meth = c("max", "rms"))  {
-      # if (debug_plot) { graphics::abline(v=ang, col='gray60') }
-      roty <- y * exp(complex(real = 0, imaginary = ang))  # spectrum rotation
-      Rey <- Re(roty)
-      
-      if (meth == "rms")  {
-        ReyPos <- Rey[Rey >= 0]  # select positive intensities
-        POSss <- sum((ReyPos)^2, na.rm = TRUE)  # SS for positive intensities
-        ss <- sum((Rey)^2, na.rm = TRUE)  #  SS for all intensities
-        return(POSss/ss)  # criterion : SS for positive values / SS for all intensities 
-      } else  {
-        maxi <- max(Rey, na.rm = TRUE)
-        return(maxi)
-      }
-    }
-    
-    
-    # Define the interval where to search for (by defining Data)
-    if (is.null(exclude.zopc)) {
-      Data <- Spectrum_data
-    } else  {
-      
-      # if ppm.zopc == TRUE, then exclude.zopc is in the colnames values, else, in the column
-      # index
-      if (ppm.zopc == TRUE)  {
-        colindex <- as.numeric(colnames(Spectrum_data))
-      } else  {
-        colindex <- 1:m
-      }
-      
-      # Second check for the argument exclude.zopc
-      diff <- diff(unlist(exclude.zopc))[1:length(diff(unlist(exclude.zopc)))%%2 !=0]
-      for (i in 1:length(diff)) {
-        if (ppm.zopc == TRUE & diff[i] >= 0)  {
-          stop(paste("Invalid region removal because from <= to in ppm.zopc"))
-        } else if (ppm.zopc == FALSE & diff[i] <= 0) {stop(paste("Invalid region removal because from >= to in column index"))}
-      }
-      
-      
-      Int <- vector("list", length(exclude.zopc))
-      for (i in 1:length(exclude.zopc))  {
-        Int[[i]] <- indexInterval(colindex, from = exclude.zopc[[i]][1], 
-                                  to = exclude.zopc[[i]][2], inclusive = TRUE)
-      }
-      
-      vector <- rep(1, m)
-      vector[unlist(Int)] <- 0
-      if (n > 1)  {
-        Data <- sweep(Spectrum_data, MARGIN = 2, FUN = "*", vector)  # Cropped_Spectrum
-      } else   {
-        Data <- Spectrum_data * vector
-      }  # Cropped_Spectrum
+ZeroOrderPhaseCorrection <- function(Spectrum_data, type.zopc = c("rms", "manual", "max"),
+                                     plot_rms = NULL, returnAngle = FALSE, createWindow = TRUE,
+                                     angle = NULL, plot_spectra = FALSE,
+                                     ppm.zopc = TRUE, exclude.zopc = list(c(5.1, 4.5))) {
+    # Data initialisation and checks ----------------------------------------------
+
+    # Entry arguments definition:
+    # plot_rms : graph of rms criterion returnAngle : if TRUE, returns avector of
+    # optimal angles createWindow : for plot_rms plots angle : If angle is not NULL,
+    # spectra are rotated according to the angle vector values
+    # plot_spectra : if TRUE, plot rotated spectra
+
+
+
+    begin_info <- beginTreatment("ZeroOrderPhaseCorrection", Spectrum_data)
+    Spectrum_data <- begin_info[["Signal_data"]]
+    n <- nrow(Spectrum_data)
+    m <- ncol(Spectrum_data)
+
+    rnames <- rownames(Spectrum_data)
+
+    # Check input arguments
+    type.zopc <- match.arg(type.zopc)
+    checkArg(ppm.zopc, c("bool"))
+    checkArg(unlist(exclude.zopc), c("num"), can.be.null = TRUE)
+
+
+    # type.zopc in c("max", "rms") -----------------------------------------
+    if (type.zopc %in% c("max", "rms")) {
+        # angle is found by optimization
+
+        # rms function to be optimised
+        rms <- function(ang, y, meth = c("max", "rms")) {
+            # if (debug_plot) { graphics::abline(v=ang, col='gray60') }
+            roty <- y * exp(complex(real = 0, imaginary = ang)) # spectrum rotation
+            Rey <- Re(roty)
+
+            if (meth == "rms") {
+                ReyPos <- Rey[Rey >= 0] # select positive intensities
+                POSss <- sum((ReyPos)^2, na.rm = TRUE) # SS for positive intensities
+                ss <- sum((Rey)^2, na.rm = TRUE) #  SS for all intensities
+                return(POSss / ss) # criterion : SS for positive values / SS for all intensities
+            } else {
+                maxi <- max(Rey, na.rm = TRUE)
+                return(maxi)
+            }
+        }
+
+
+        # Define the interval where to search for (by defining Data)
+        if (is.null(exclude.zopc)) {
+            Data <- Spectrum_data
+        } else {
+            # if ppm.zopc == TRUE, then exclude.zopc is in the colnames values, else, in the column
+            # index
+            if (ppm.zopc == TRUE) {
+                colindex <- as.numeric(colnames(Spectrum_data))
+            } else {
+                colindex <- 1:m
+            }
+
+            # Second check for the argument exclude.zopc
+            diff <- diff(unlist(exclude.zopc))[1:length(diff(unlist(exclude.zopc))) %% 2 != 0]
+            for (i in 1:length(diff)) {
+                if (ppm.zopc == TRUE & diff[i] >= 0) {
+                    stop(paste("Invalid region removal because from <= to in ppm.zopc"))
+                } else if (ppm.zopc == FALSE & diff[i] <= 0) {
+                    stop(paste("Invalid region removal because from >= to in column index"))
+                }
+            }
+
+
+            Int <- vector("list", length(exclude.zopc))
+            for (i in 1:length(exclude.zopc)) {
+                Int[[i]] <- indexInterval(colindex,
+                    from = exclude.zopc[[i]][1],
+                    to = exclude.zopc[[i]][2], inclusive = TRUE
+                )
+            }
+
+            vector <- rep(1, m)
+            vector[unlist(Int)] <- 0
+            if (n > 1) {
+                Data <- sweep(Spectrum_data, MARGIN = 2, FUN = "*", vector) # Cropped_Spectrum
+            } else {
+                Data <- Spectrum_data * vector
+            } # Cropped_Spectrum
+        }
+
+
+        # angles computation
+        Angle <- c()
+        for (k in 1:n)
+        {
+            # The function is rms is periodic (period 2pi) and it seems that there is a phase
+            # x such that rms is unimodal (i.e. decreasing then increasing) on the interval
+            # [x; x+2pi].  However, if we do the optimization for example on [x-pi; x+pi],
+            # instead of being decreasing then increasing, it might be increasing then
+            # decreasing in which case optimize, thinking it is a valley will have to choose
+            # between the left or the right of this hill and if it chooses wrong, it will end
+            # up at like x-pi while the minimum is close to x+pi.
+
+            # Supposing that rms is unimodal, the classical 1D unimodal optimization will
+            # work in either [-pi;pi] or [0;2pi] (this is not easy to be convinced by that I
+            # agree) and we can check which one it is simply by the following trick
+
+            f0 <- rms(0, Data[k, ], meth = type.zopc)
+            fpi <- rms(pi, Data[k, ], meth = type.zopc)
+            if (f0 < fpi) {
+                interval <- c(-pi, pi)
+            } else {
+                interval <- c(0, 2 * pi)
+            }
+
+            # graphs of rms criteria
+            debug_plot <- F # rms should not plot anything now, only when called by optimize
+            if (!is.null(plot_rms) && rnames[k] %in% plot_rms) {
+                x <- seq(min(interval), max(interval), length.out = 100)
+                y <- rep(1, 100)
+                for (K in (1:100)) {
+                    y[K] <- rms(x[K], Data[k, ], meth = type.zopc)
+                }
+                if (createWindow == TRUE) {
+                    grDevices::dev.new(noRStudioGD = FALSE)
+                }
+                graphics::plot(x, y,
+                    main = paste(
+                        "Criterion maximization \n",
+                        rownames(Data)[k]
+                    ), ylim = c(0, 1.1),
+                    ylab = "positiveness criterion", xlab = "angle "
+                )
+                debug_plot <- T
+            }
+
+            # Best angle
+            best <- stats::optimize(rms,
+                interval = interval, maximum = TRUE,
+                y = Data[k, ], meth = type.zopc
+            )
+            ang <- best[["maximum"]]
+
+
+            if (debug_plot) {
+                graphics::abline(v = ang, col = "black")
+                graphics::text(x = (ang + 0.1 * ang), y = (y[ang] - 0.1 * y[ang]), labels = round(ang, 3))
+            }
+
+            # Spectrum rotation
+            Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = ang))
+            Angle <- c(Angle, ang)
+        }
+    } else {
+        # type.zopc is "manual" -------------------------------------------------------
+        # if Angle is already specified and no optimisation is needed
+        Angle <- angle
+
+        if (!is.vector(angle)) {
+            stop("angle is not a vector")
+        }
+
+        if (!is.numeric(angle)) {
+            stop("angle is not a numeric")
+        }
+
+        if (length(angle) != n) {
+            stop(paste("angle has length", length(angle), "and there are", n, "spectra to rotate."))
+        }
+        for (k in 1:n) {
+            Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = -angle[k]))
+        }
     }
-    
-    
-    # angles computation
-    Angle <- c()
-    for (k in 1:n)
-    {
-      # The function is rms is periodic (period 2pi) and it seems that there is a phase
-      # x such that rms is unimodal (i.e. decreasing then increasing) on the interval
-      # [x; x+2pi].  However, if we do the optimization for example on [x-pi; x+pi],
-      # instead of being decreasing then increasing, it might be increasing then
-      # decreasing in which case optimize, thinking it is a valley will have to choose
-      # between the left or the right of this hill and if it chooses wrong, it will end
-      # up at like x-pi while the minimum is close to x+pi.
-      
-      # Supposing that rms is unimodal, the classical 1D unimodal optimization will
-      # work in either [-pi;pi] or [0;2pi] (this is not easy to be convinced by that I
-      # agree) and we can check which one it is simply by the following trick
-      
-      f0 <- rms(0, Data[k, ],meth = type.zopc)
-      fpi <- rms(pi, Data[k, ], meth = type.zopc)
-      if (f0 < fpi) {
-        interval <- c(-pi, pi)
-      } else {
-        interval <- c(0, 2 * pi)
-      }
-      
-      # graphs of rms criteria
-      debug_plot <- F  # rms should not plot anything now, only when called by optimize
-      if (!is.null(plot_rms) && rnames[k] %in% plot_rms) {
-        x <- seq(min(interval), max(interval), length.out = 100)
-        y <- rep(1, 100)
-        for (K in (1:100))   {
-          y[K] <- rms(x[K], Data[k, ],  meth = type.zopc)
-        }
-        if (createWindow == TRUE)  {
-          grDevices::dev.new(noRStudioGD = FALSE)
+
+
+    #  Draw spectra
+    if (plot_spectra == TRUE) {
+        nn <- ceiling(n / 4)
+        i <- 1
+        for (k in 1:nn) {
+            if (createWindow == TRUE) {
+                grDevices::dev.new(noRStudioGD = FALSE)
+            }
+            graphics::par(mfrow = c(4, 2))
+            while (i <= n) {
+                last <- min(i + 4 - 1, n)
+                graphics::plot(Re(Spectrum_data[i, ]),
+                    type = "l", ylab = "intensity",
+                    xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Real part")
+                )
+                graphics::plot(Im(Spectrum_data[i, ]),
+                    type = "l", ylab = "intensity",
+                    xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Imaginary part")
+                )
+                i <- i + 1
+            }
+            i <- last + 1
         }
-        graphics::plot(x, y, main = paste("Criterion maximization \n", 
-                                          rownames(Data)[k]), ylim = c(0, 1.1),
-                       ylab = "positiveness criterion", xlab = "angle ")
-        debug_plot <- T
-      }
-      
-      # Best angle
-      best <- stats::optimize(rms, interval = interval, maximum = TRUE, 
-                              y = Data[k,],  meth = type.zopc)
-      ang <- best[["maximum"]]
-      
-      
-      if (debug_plot)  {
-        graphics::abline(v = ang, col = "black")
-        graphics::text(x = (ang+0.1*ang), y = (y[ang]-0.1*y[ang]), labels = round(ang, 3))
-      }
-      
-      # Spectrum rotation
-      Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = ang))
-      Angle <- c(Angle, ang)
-    }
-    
-    
-    
-    
-  } else {
-    # type.zopc is "manual" -------------------------------------------------------
-    # if Angle is already specified and no optimisation is needed
-    Angle <- angle
-    
-    if (!is.vector(angle)) {
-      stop("angle is not a vector")
-    }
-    
-    if (!is.numeric(angle))  {
-      stop("angle is not a numeric")
     }
-    
-    if (length(angle) != n) {
-      stop(paste("angle has length", length(angle), "and there are", n, "spectra to rotate."))
-    }
-    for (k in 1:n)  {
-      Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = - angle[k]))
+
+
+    # Data finalisation ----------------------------------------------
+
+    Spectrum_data <- endTreatment("ZeroOrderPhaseCorrection", begin_info, Spectrum_data)
+    if (returnAngle) {
+        return(list(Spectrum_data = Spectrum_data, Angle = Angle))
+    } else {
+        return(Spectrum_data)
     }
-  }
-  
-  
-  #  Draw spectra
-  if (plot_spectra == TRUE) {
-    nn <- ceiling(n/4)
-    i <- 1
-    for (k in 1:nn)  {
-      if (createWindow == TRUE)  {
-        grDevices::dev.new(noRStudioGD = FALSE)
-      }
-      graphics::par(mfrow = c(4, 2))
-      while (i <= n)   {
-        last <- min(i + 4 - 1, n)
-        graphics::plot(Re(Spectrum_data[i, ]), type = "l", ylab = "intensity", 
-                       xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Real part"))
-        graphics::plot(Im(Spectrum_data[i, ]), type = "l", ylab = "intensity", 
-                       xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Imaginary part"))
-        i <- i + 1
-      }
-      i <- last + 1
-    }
-  }
-  
-  
-  # Data finalisation ----------------------------------------------
-  
-  Spectrum_data <- endTreatment("ZeroOrderPhaseCorrection", begin_info, Spectrum_data)
-  if (returnAngle) {
-    return(list(Spectrum_data = Spectrum_data, Angle = Angle))
-  } else {
-    return(Spectrum_data)
-  }
 }
 
 
 ## ====================================================
-# Baseline Correction   
+# Baseline Correction
 ## ====================================================
-BaselineCorrection <- function(Spectrum_data, ptw.bc = TRUE, maxIter = 42, 
-                               lambda.bc = 1e+07, p.bc = 0.05, eps = 1e-08, 
-                               ppm.bc = TRUE, exclude.bc = list(c(5.1,4.5)),
+BaselineCorrection <- function(Spectrum_data, ptw.bc = TRUE, maxIter = 42,
+                               lambda.bc = 1e+07, p.bc = 0.05, eps = 1e-08,
+                               ppm.bc = TRUE, exclude.bc = list(c(5.1, 4.5)),
                                returnBaseline = F) {
-  
-  # Data initialisation ----------------------------------------------
-  begin_info <- beginTreatment("BaselineCorrection", Spectrum_data, force.real = T)
-  Spectrum_data <- begin_info[["Signal_data"]]
-  p <- p.bc
-  lambda <- lambda.bc
-  n <- dim(Spectrum_data)[1]
-  m <- dim(Spectrum_data)[2]
-  
-  
-  # Data check
-  checkArg(ptw.bc, c("bool"))
-  checkArg(maxIter, c("int", "pos"))
-  checkArg(lambda, c("num", "pos0"))
-  checkArg(p.bc, c("num", "pos0"))
-  checkArg(eps, c("num", "pos0"))
-  checkArg(returnBaseline, c("bool"))
-  checkArg(ppm.bc, c("bool"))
-  checkArg(unlist(exclude.bc), c("num"), can.be.null = TRUE)
-  
-  # Define the interval where to search for (by defining Data)
-  if (is.null(exclude.bc)) {
-    exclude_index <- NULL
-  } else  {
-    # if ppm.bc == TRUE, then exclude.bc is in the colnames values, else, in the column
-    # index
-    if (ppm.bc == TRUE)  {
-      colindex <- as.numeric(colnames(Spectrum_data))
-    } else  {
-      colindex <- 1:m
-    }
-    
-    Int <- vector("list", length(exclude.bc))
-    for (i in 1:length(exclude.bc))  {
-      Int[[i]] <- indexInterval(colindex, from = exclude.bc[[i]][1], 
-                                to = exclude.bc[[i]][2], inclusive = TRUE)
+    # Data initialisation ----------------------------------------------
+    begin_info <- beginTreatment("BaselineCorrection", Spectrum_data, force.real = T)
+    Spectrum_data <- begin_info[["Signal_data"]]
+    p <- p.bc
+    lambda <- lambda.bc
+    n <- dim(Spectrum_data)[1]
+    m <- dim(Spectrum_data)[2]
+
+
+    # Data check
+    checkArg(ptw.bc, c("bool"))
+    checkArg(maxIter, c("int", "pos"))
+    checkArg(lambda, c("num", "pos0"))
+    checkArg(p.bc, c("num", "pos0"))
+    checkArg(eps, c("num", "pos0"))
+    checkArg(returnBaseline, c("bool"))
+    checkArg(ppm.bc, c("bool"))
+    checkArg(unlist(exclude.bc), c("num"), can.be.null = TRUE)
+
+    # Define the interval where to search for (by defining Data)
+    if (is.null(exclude.bc)) {
+        exclude_index <- NULL
+    } else {
+        # if ppm.bc == TRUE, then exclude.bc is in the colnames values, else, in the column
+        # index
+        if (ppm.bc == TRUE) {
+            colindex <- as.numeric(colnames(Spectrum_data))
+        } else {
+            colindex <- 1:m
+        }
+
+        Int <- vector("list", length(exclude.bc))
+        for (i in 1:length(exclude.bc)) {
+            Int[[i]] <- indexInterval(colindex,
+                from = exclude.bc[[i]][1],
+                to = exclude.bc[[i]][2], inclusive = TRUE
+            )
+        }
+        exclude_index <- unlist(Int)
     }
-    exclude_index <- unlist(Int)
-  }
-  
-  # Baseline Correction implementation definition ----------------------
-  
-  # 2 Ways: either use the function asysm from the ptw package or by 
-  # built-in functions 
-  if (ptw.bc) {
-    asysm <- ptw::asysm
-  } else {
-    difsmw <- function(y, lambda, w, d) {
-      # Weighted smoothing with a finite difference penalty cf Eilers, 2003.
-      # (A perfect smoother) 
-      # y: signal to be smoothed 
-      # lambda: smoothing parameter 
-      # w: weights (use0 zeros for missing values) 
-      # d: order of differences in penalty (generally 2)
-      m <- length(y)
-      W <- Matrix::Diagonal(x=w)
-      E <- Matrix::Diagonal(m)
-      D <- Matrix::diff(E, differences = d)
-      C <- Matrix::chol(W + lambda * t(D) %*% D)
-      x <- Matrix::solve(C, Matrix::solve(t(C), w * y))
-      return(as.numeric(x))
-      
-    }
-    asysm <- function(y, lambda, p, eps, exclude_index) {
-      # Baseline estimation with asymmetric least squares
-      # y: signal
-      # lambda: smoothing parameter (generally 1e5 to 1e8)
-      # p: asymmetry parameter (generally 0.001)
-      # d: order of differences in penalty (generally 2)
-      # eps: 1e-8 in ptw package
-      m <- length(y)
-      w <- rep(1, m)
-      i <- 1
-      repeat {
-        z <- difsmw(y, lambda, w, d = 2)
-        w0 <- w
-        p_vect <- rep((1-p), m) # if y <= z + eps
-        p_vect[y > z + eps | y < 0] <- p  # if y > z + eps | y < 0
-        if(!is.null(exclude_index)){
-          p_vect[exclude_index] <- 0 # if exclude area
+
+    # Baseline Correction implementation definition ----------------------
+
+    # 2 Ways: either use the function asysm from the ptw package or by
+    # built-in functions
+    if (ptw.bc) {
+        asysm <- ptw::asysm
+    } else {
+        difsmw <- function(y, lambda, w, d) {
+            # Weighted smoothing with a finite difference penalty cf Eilers, 2003.
+            # (A perfect smoother)
+            # y: signal to be smoothed
+            # lambda: smoothing parameter
+            # w: weights (use0 zeros for missing values)
+            # d: order of differences in penalty (generally 2)
+            m <- length(y)
+            W <- Matrix::Diagonal(x = w)
+            E <- Matrix::Diagonal(m)
+            D <- Matrix::diff(E, differences = d)
+            C <- Matrix::chol(W + lambda * t(D) %*% D)
+            x <- Matrix::solve(C, Matrix::solve(t(C), w * y))
+            return(as.numeric(x))
         }
-        
-        w <- p_vect  
-        # w <- p * (y > z + eps | y < 0) + (1 - p) * (y <= z + eps)
-        
-        if (sum(abs(w - w0)) == 0) {
-          break
+        asysm <- function(y, lambda, p, eps, exclude_index) {
+            # Baseline estimation with asymmetric least squares
+            # y: signal
+            # lambda: smoothing parameter (generally 1e5 to 1e8)
+            # p: asymmetry parameter (generally 0.001)
+            # d: order of differences in penalty (generally 2)
+            # eps: 1e-8 in ptw package
+            m <- length(y)
+            w <- rep(1, m)
+            i <- 1
+            repeat {
+                z <- difsmw(y, lambda, w, d = 2)
+                w0 <- w
+                p_vect <- rep((1 - p), m) # if y <= z + eps
+                p_vect[y > z + eps | y < 0] <- p # if y > z + eps | y < 0
+                if (!is.null(exclude_index)) {
+                    p_vect[exclude_index] <- 0 # if exclude area
+                }
+
+                w <- p_vect
+                # w <- p * (y > z + eps | y < 0) + (1 - p) * (y <= z + eps)
+
+                if (sum(abs(w - w0)) == 0) {
+                    break
+                }
+                i <- i + 1
+                if (i > maxIter) {
+                    warning("cannot find Baseline estimation in asysm")
+                    break
+                }
+            }
+            return(z)
         }
-        i <- i + 1
-        if (i > maxIter) {
-          warning("cannot find Baseline estimation in asysm")
-          break
-        }
-      }
-      return(z)
     }
-  }
-  
-  # Baseline estimation ----------------------------------------------
-  Baseline <- matrix(NA, nrow = nrow(Spectrum_data), ncol = ncol(Spectrum_data))
-  
-  # for (k in 1:n) {
-  # Baseline[k, ] <- asysm(y = Spectrum_data[k, ], lambda = lambda, p = p, eps = eps)
-  
-  if (ptw.bc ){
-    Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p, 
-                      eps = eps)
-  }else {
-    Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p, 
-                      eps = eps, exclude_index = exclude_index)
-  }
-  
-  
-  Spectrum_data <- Spectrum_data - t(Baseline)
-  # }
-  
-  # Data finalisation ----------------------------------------------
-  Spectrum_data <- endTreatment("BaselineCorrection", begin_info, Spectrum_data)  # FIXME create removeImaginary filter ??
-  
-  if (returnBaseline) {
-    return(list(Spectrum_data = Spectrum_data, Baseline = Baseline))
-  } else {
-    return(Spectrum_data)
-  }
+
+    # Baseline estimation ----------------------------------------------
+    Baseline <- matrix(NA, nrow = nrow(Spectrum_data), ncol = ncol(Spectrum_data))
+
+    # for (k in 1:n) {
+    # Baseline[k, ] <- asysm(y = Spectrum_data[k, ], lambda = lambda, p = p, eps = eps)
+
+    if (ptw.bc) {
+        Baseline <- apply(Spectrum_data, 1, asysm,
+            lambda = lambda, p = p,
+            eps = eps
+        )
+    } else {
+        Baseline <- apply(Spectrum_data, 1, asysm,
+            lambda = lambda, p = p,
+            eps = eps, exclude_index = exclude_index
+        )
+    }
+
+
+    Spectrum_data <- Spectrum_data - t(Baseline)
+    # }
+
+    # Data finalisation ----------------------------------------------
+    Spectrum_data <- endTreatment("BaselineCorrection", begin_info, Spectrum_data) # FIXME create removeImaginary filter ??
+
+    if (returnBaseline) {
+        return(list(Spectrum_data = Spectrum_data, Baseline = Baseline))
+    } else {
+        return(Spectrum_data)
+    }
 }
 
 
 
 ## ====================================================
-# NegativeValuesZeroing   
+# NegativeValuesZeroing
 ## ====================================================
 
 NegativeValuesZeroing <- function(Spectrum_data) {
-  # Data initialisation and checks ----------------------------------------------
-  begin_info <- beginTreatment("NegativeValuesZeroing", Spectrum_data, force.real = T)
-  Spectrum_data <- begin_info[["Signal_data"]]
-  
-  # NegativeValuesZeroing ----------------------------------------------
-  Spectrum_data[Spectrum_data < 0] <- 0
-  
-  # Data finalisation ----------------------------------------------
-  return(endTreatment("NegativeValuesZeroing", begin_info, Spectrum_data))
+    # Data initialisation and checks ----------------------------------------------
+    begin_info <- beginTreatment("NegativeValuesZeroing", Spectrum_data, force.real = T)
+    Spectrum_data <- begin_info[["Signal_data"]]
+
+    # NegativeValuesZeroing ----------------------------------------------
+    Spectrum_data[Spectrum_data < 0] <- 0
+
+    # Data finalisation ----------------------------------------------
+    return(endTreatment("NegativeValuesZeroing", begin_info, Spectrum_data))
 }
-
-