Mercurial > repos > marie-tremblay-metatoul > normalization
comparison NmrNormalization_script.R @ 6:221cbd549c40 draft default tip
planemo upload for repository https://github.com/workflow4metabolomics/normalization commit 4bbd4d65e954192aff1a4d210001deb625667136
author | workflow4metabolomics |
---|---|
date | Tue, 30 Jul 2019 09:43:57 -0400 |
parents | 966fcf7ae66e |
children |
comparison
equal
deleted
inserted
replaced
5:3d00a98974b7 | 6:221cbd549c40 |
---|---|
94 | 94 |
95 # Reference spectrum | 95 # Reference spectrum |
96 # Recuperation spectres individus controle | 96 # Recuperation spectres individus controle |
97 control.spectra <- data.normalized[,sampleMetadata[,pqnFactor]==nomControl] | 97 control.spectra <- data.normalized[,sampleMetadata[,pqnFactor]==nomControl] |
98 spectrum.ref <- apply(control.spectra,1,median) | 98 spectrum.ref <- apply(control.spectra,1,median) |
99 for (j in 1:length(spectrum.ref)) | |
100 { | |
101 if (spectrum.ref[j] == 0) | |
102 spectrum.ref[j] <- mean(control.spectra[j, ]) | |
103 if (spectrum.ref[j] == 0) | |
104 spectrum.ref[j] <- 10^(-24) | |
105 } | |
99 | 106 |
100 # Ratio between normalized and reference spectra | 107 # Ratio between normalized and reference spectra |
101 data.normalized.ref <- data.normalized/spectrum.ref | 108 data.normalized.ref <- data.normalized/spectrum.ref |
102 | 109 |
103 # Median ratio | 110 # Median ratio |
104 data.normalized.ref.median <- apply(data.normalized.ref,1,median) | 111 data.normalized.ref.median <- apply(data.normalized.ref,1,median) |
112 for (j in 1:length(data.normalized.ref.median)) | |
113 if (data.normalized.ref.median[j] == 0 | is.na(data.normalized.ref.median[j]) | data.normalized.ref.median == "NaN" | data.normalized.ref.median == "NA") | |
114 data.normalized.ref.median[j] <- mean(data.normalized.ref[j, ]) | |
105 | 115 |
106 # Normalization | 116 # Normalization |
107 data.normalizedPQN <- data.normalized[,1]/data.normalized.ref.median | 117 data.normalizedPQN <- data.normalized[,1]/data.normalized.ref.median |
108 for (i in 2:ncol(data)) | 118 for (i in 2:ncol(data)) |
109 data.normalizedPQN <- cbind(data.normalizedPQN,data.normalized[,i]/data.normalized.ref.median) | 119 data.normalizedPQN <- cbind(data.normalizedPQN,data.normalized[,i]/data.normalized.ref.median) |
143 | 153 |
144 ## OUTPUTS | 154 ## OUTPUTS |
145 return(list(NormalizedBucketedSpectra)) | 155 return(list(NormalizedBucketedSpectra)) |
146 | 156 |
147 } | 157 } |
158 |