Mercurial > repos > marpiech > norwich_docking_tools
diff galaxy-tools/tools/rdock/bin/sdtether @ 0:4eb3f9cb2a51 draft
Uploaded
author | dzesikah |
---|---|
date | Fri, 26 Aug 2016 09:53:37 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/galaxy-tools/tools/rdock/bin/sdtether Fri Aug 26 09:53:37 2016 -0400 @@ -0,0 +1,263 @@ +#! /usr/bin/env python +# +# Substitute for rbtether of rDock. Will align input molecules to a reference fragment defined by a smarts string, +# it will add a TETHERED ATOM property field to the output SDF that is correctly understood by rDock +# rDock will restrain the matching atom positions to the reference molecule coordinates. +# +# Initially implemented with a conformational search algorithm to better match target coordinates. +# But had problems with OBabel FF generating non-sense conformers. So in this version the conformer search is commented out. +# Now if the input molecule do not have a good conformation, might not align well with the target. This effect will be +# dimished or even vanish if the SMARTS string is defined for a rigid region (like a ring). +# I'm still trying to incorporate somehow this conformational search. +# +# Script distributed under GNU LGPL 3.0 along rDock software. +# +# Author: Daniel Alvarez-Garcia +# Date: 08-11-2013 + +import math +import pybel +import numpy as npy + +def superpose3D(ref, target, weights=None,refmask=None,targetmask=None,returnRotMat=False): + """superpose3D performs 3d superposition using a weighted Kabsch algorithm : http://dx.doi.org/10.1107%2FS0567739476001873 & doi: 10.1529/biophysj.105.066654 + definition : superpose3D(ref, target, weights,refmask,targetmask) + @parameter 1 : ref - xyz coordinates of the reference structure (the ligand for instance) + @type 1 : float64 numpy array (nx3) + --- + @parameter 2 : target - theoretical target positions to which we should move (does not need to be physically relevant. + @type 2 : float 64 numpy array (nx3) + --- + @parameter 3: weights - numpy array of atom weights (usuallly between 0 and 1) + @type 3 : float 64 numpy array (n) + @parameter 4: mask - a numpy boolean mask for designating atoms to include + Note ref and target positions must have the same dimensions -> n*3 numpy arrays where n is the number of points (or atoms) + Returns a set of new coordinates, aligned to the target state as well as the rmsd + """ + if weights == None : + weights=1.0 + if refmask == None : + refmask=npy.ones(len(ref),"bool") + if targetmask == None : + targetmask=npy.ones(len(target),"bool") + #first get the centroid of both states + ref_centroid = npy.mean(ref[refmask]*weights,axis=0) + #print ref_centroid + refCenteredCoords=ref-ref_centroid + #print refCenteredCoords + target_centroid=npy.mean(target[targetmask]*weights,axis=0) + targetCenteredCoords=target-target_centroid + #print targetCenteredCoords + #the following steps come from : http://www.pymolwiki.org/index.php/OptAlign#The_Code and http://en.wikipedia.org/wiki/Kabsch_algorithm + # Initial residual, see Kabsch. + E0 = npy.sum( npy.sum(refCenteredCoords[refmask] * refCenteredCoords[refmask]*weights,axis=0),axis=0) + npy.sum( npy.sum(targetCenteredCoords[targetmask] * targetCenteredCoords[targetmask]*weights,axis=0),axis=0) + reftmp=npy.copy(refCenteredCoords[refmask]) + targettmp=npy.copy(targetCenteredCoords[targetmask]) + #print refCenteredCoords[refmask] + #single value decomposition of the dotProduct of both position vectors + try: + dotProd = npy.dot( npy.transpose(reftmp), targettmp* weights) + V, S, Wt = npy.linalg.svd(dotProd ) + except Exception: + try: + dotProd = npy.dot( npy.transpose(reftmp), targettmp) + V, S, Wt = npy.linalg.svd(dotProd ) + except Exception: + print >> sys.stderr,"Couldn't perform the Single Value Decomposition, skipping alignment" + return ref, 0 + # we already have our solution, in the results from SVD. + # we just need to check for reflections and then produce + # the rotation. V and Wt are orthonormal, so their det's + # are +/-1. + reflect = float(str(float(npy.linalg.det(V) * npy.linalg.det(Wt)))) + if reflect == -1.0: + S[-1] = -S[-1] + V[:,-1] = -V[:,-1] + rmsd = E0 - (2.0 * sum(S)) + rmsd = npy.sqrt(abs(rmsd / len(ref[refmask]))) #get the rmsd + #U is simply V*Wt + U = npy.dot(V, Wt) #get the rotation matrix + # rotate and translate the molecule + new_coords = npy.dot((refCenteredCoords), U)+ target_centroid #translate & rotate + #new_coords=(refCenteredCoords + target_centroid) + #print U + if returnRotMat : + return U, ref_centroid, target_centroid, rmsd + return new_coords,rmsd + + +def squared_distance(coordsA, coordsB): + """Find the squared distance between two 3-tuples""" + sqrdist = sum( (a-b)**2 for a, b in zip(coordsA, coordsB) ) + return sqrdist + +def rmsd(allcoordsA, allcoordsB): + """Find the RMSD between two lists of 3-tuples""" + deviation = sum(squared_distance(atomA, atomB) for + (atomA, atomB) in zip(allcoordsA, allcoordsB)) + return math.sqrt(deviation / float(len(allcoordsA))) + +def mapToCrystal(xtal, pose): + """Some docking programs might alter the order of the atoms in the output (like Autodock Vina does...) + this will mess up the rmsd calculation with OpenBabel""" + query = pybel.ob.CompileMoleculeQuery(xtal.OBMol) + mapper=pybel.ob.OBIsomorphismMapper.GetInstance(query) + mappingpose = pybel.ob.vvpairUIntUInt() + exit=mapper.MapUnique(pose.OBMol,mappingpose) + return mappingpose[0] + +def takeCoords(obmol): + """Take coordinates of an OBMol as a npy array""" + return npy.array([atom.coords for atom in obmol]) + +def updateCoords(obmol, newcoords): + "Update OBMol coordinates. newcoords is a numpy array" + for i,atom in enumerate(obmol): + atom.OBAtom.SetVector(*newcoords[i]) + +def prepareAtomString(idlist): + s = "" + n = len(idlist) + for i, id in enumerate(idlist): + s += "%i"%id + if (i+1) == n: s+="\n" + elif (i+1)%35 == 0: s+=",\n" + else: s+="," + return s + + +if __name__ == "__main__": + import sys + + if len(sys.argv) != 5: + sys.exit("USAGE: %s reference.sdf input.sdf output.sdf 'SMARTS'"%sys.argv[0]) + + refsdf = sys.argv[1] + molsdf = sys.argv[2] + outsdf = sys.argv[3] + smarts = pybel.Smarts(sys.argv[4]) + + # Read reference pose and get atom list matching smarts query + # if more than 1 match, take the first one + ref = next(pybel.readfile("sdf", refsdf)) + refMatchIds = smarts.findall(ref) + numRefMatchs = len(refMatchIds) + + if not numRefMatchs: + sys.exit("No match found in the reference structure and the SMARTS string given. Please check it.") + + if numRefMatchs > 1: + print "More than one match in the reference molecule for the SMARTS string given. Will tether each input molecule all possible ways." + + refIndxPerMatch = [npy.array(rmi) - 1 for rmi in refMatchIds] + + # Take coordinates for the reference matched atoms + refCoords = takeCoords(ref) + refMatchCoords = [npy.take(refCoords, refIndx, axis=0) for refIndx in refIndxPerMatch] + + # Do the same for molecule in molsdf + out=pybel.Outputfile('sdf', outsdf, overwrite=True) + molSupp = pybel.readfile("sdf", molsdf) + ff = pybel.ob.OBForceField_FindForceField('MMFF94') + for i,mol in enumerate(molSupp): + print "## Molecule %i"%(i+1), + mol.OBMol.DeleteNonPolarHydrogens() + molMatchAllIds = smarts.findall(mol) + numMatchs = len(molMatchAllIds) + + if numMatchs == 0: + print "No_Match", + continue + elif numMatchs ==1: + print "Match", + elif numMatchs > 1: + print "Multiple_Match SMART Matches for this molecule (%d)"%numMatchs, + + # If more than one match, write an output of the same molecule for each match + # Start a default bestcoord and rmsd for later looping for each pose + bestCoordPerMatch = [[0 for i in range(numMatchs)] for i in range(numRefMatchs)] + bestRMSPerMatch = [[999 for i in range(numMatchs)] for i in range(numRefMatchs)] + + # Will do a randomrotorsearch to find conformer with the lower rmsd when superposing + # At least 20 when possible + #ff.Setup(mol.OBMol) + #numats = mol.OBMol.NumAtoms() + #numrot = mol.OBMol.NumRotors() + #print "Atoms: %i, Rotors: %i"%(numats, numrot) + #geomopt = 300 + #genconf = 100 + # increase iterations if bigger molecule or bigger number of rotatable bonds + # for allowing better sampling + #if numats > 40 and numrot > 5: + # geomopt = 300 + # genconf = 150 + #if numats > 55 and numrot > 7: + # genconf = 100 + # geomopt = 500 + #print "\tDoing conformational search with WeightedRotorSearch (%i, %i)..."%(genconf, geomopt), + #ff.SteepestDescent(500, 1.0e-4) + #ff.WeightedRotorSearch(genconf,geomopt) + #ff.ConjugateGradients(500, 1.0e-6) + #ff.GetConformers(mol.OBMol) + #numconf = mol.OBMol.NumConformers() + numconf = 1 + #print "%i conformers generated"%numconf + if numconf > 1: + # Doing conf search + #for i in range(numconf): + # mol.OBMol.SetConformer(i) + # confCoords = takeCoords(mol) + # print 'coord:',confCoords[0,:] + # + # for imatch, molMatchIds in enumerate(molMatchAllIds): + # molMatchIndx = npy.array(molMatchIds) - 1 + # confMatchCoords = npy.take(confCoords, molMatchIndx, axis=0) + # + # # Align: Get rotation matrix between the two sets of coords + # # Apply rotation to the whole target molecule + # rotMat, targetCentroid, refCentroid, rmsd = superpose3D(confMatchCoords, refMatchCoords, returnRotMat=True) + # if rmsd < bestRMSPerMatch[imatch]: + # newcoords = npy.dot((confCoords - targetCentroid), rotMat) + refCentroid + # bestRMSPerMatch[imatch] = rmsd + # bestCoordPerMatch[imatch] = newcoords + # #if bestrms < 0.01: break + pass + else: + molCoords = takeCoords(mol) + for imatch, molMatchIds in enumerate(molMatchAllIds): + # loop in each matching way for the input molecule + molMatchIndx = npy.array(molMatchIds) - 1 + molMatchCoords = npy.take(molCoords, molMatchIndx, axis=0) + + # Loop over the reference matches + # Align: Get rotation matrix between the two sets of coords + # Apply rotation to the whole target molecule + for ir, refMatchCoord in enumerate(refMatchCoords): + rotMat, targetCentroid, refCentroid, rmsd = superpose3D(molMatchCoords, refMatchCoord, returnRotMat=True) + if rmsd < bestRMSPerMatch[ir][imatch]: + newcoords = npy.dot((molCoords - targetCentroid), rotMat) + refCentroid + bestRMSPerMatch[ir][imatch] = rmsd + bestCoordPerMatch[ir][imatch] = newcoords + + # Finally update molecule coordinates with the best matching coordinates found + # change molecule coordinates, set TETHERED ATOMS property and save + for imatch in range(numMatchs): + for irefmatch in range(numRefMatchs): + bestCoord = bestCoordPerMatch[irefmatch][imatch] + bestRMS = bestRMSPerMatch[irefmatch][imatch] + print "\tBest RMSD reached (match %d, refmatch %d): %s"%(imatch, irefmatch, bestRMS) + molMatchID = molMatchAllIds[imatch] + updateCoords(mol, bestCoord) + newData = pybel.ob.OBPairData() + newData.SetAttribute("TETHERED ATOMS") + newData.SetValue(prepareAtomString(molMatchID)) + + mol.OBMol.DeleteData("TETHERED ATOMS") # Remove Previous DATA + mol.OBMol.CloneData(newData) # Add new data + out.write(mol) + + out.close() + + print "DONE" + sys.stdout.close() + sys.stderr.close()