Mercurial > repos > marpiech > norwich_tools_docking
comparison tools/rdock/bin/sdtether @ 3:b02d74d22d05 draft default tip
planemo upload
author | marpiech |
---|---|
date | Mon, 29 Aug 2016 08:23:52 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2:bd50f811878f | 3:b02d74d22d05 |
---|---|
1 #! /usr/bin/env python | |
2 # | |
3 # Substitute for rbtether of rDock. Will align input molecules to a reference fragment defined by a smarts string, | |
4 # it will add a TETHERED ATOM property field to the output SDF that is correctly understood by rDock | |
5 # rDock will restrain the matching atom positions to the reference molecule coordinates. | |
6 # | |
7 # Initially implemented with a conformational search algorithm to better match target coordinates. | |
8 # But had problems with OBabel FF generating non-sense conformers. So in this version the conformer search is commented out. | |
9 # Now if the input molecule do not have a good conformation, might not align well with the target. This effect will be | |
10 # dimished or even vanish if the SMARTS string is defined for a rigid region (like a ring). | |
11 # I'm still trying to incorporate somehow this conformational search. | |
12 # | |
13 # Script distributed under GNU LGPL 3.0 along rDock software. | |
14 # | |
15 # Author: Daniel Alvarez-Garcia | |
16 # Date: 08-11-2013 | |
17 | |
18 import math | |
19 import pybel | |
20 import numpy as npy | |
21 | |
22 def superpose3D(ref, target, weights=None,refmask=None,targetmask=None,returnRotMat=False): | |
23 """superpose3D performs 3d superposition using a weighted Kabsch algorithm : http://dx.doi.org/10.1107%2FS0567739476001873 & doi: 10.1529/biophysj.105.066654 | |
24 definition : superpose3D(ref, target, weights,refmask,targetmask) | |
25 @parameter 1 : ref - xyz coordinates of the reference structure (the ligand for instance) | |
26 @type 1 : float64 numpy array (nx3) | |
27 --- | |
28 @parameter 2 : target - theoretical target positions to which we should move (does not need to be physically relevant. | |
29 @type 2 : float 64 numpy array (nx3) | |
30 --- | |
31 @parameter 3: weights - numpy array of atom weights (usuallly between 0 and 1) | |
32 @type 3 : float 64 numpy array (n) | |
33 @parameter 4: mask - a numpy boolean mask for designating atoms to include | |
34 Note ref and target positions must have the same dimensions -> n*3 numpy arrays where n is the number of points (or atoms) | |
35 Returns a set of new coordinates, aligned to the target state as well as the rmsd | |
36 """ | |
37 if weights == None : | |
38 weights=1.0 | |
39 if refmask == None : | |
40 refmask=npy.ones(len(ref),"bool") | |
41 if targetmask == None : | |
42 targetmask=npy.ones(len(target),"bool") | |
43 #first get the centroid of both states | |
44 ref_centroid = npy.mean(ref[refmask]*weights,axis=0) | |
45 #print ref_centroid | |
46 refCenteredCoords=ref-ref_centroid | |
47 #print refCenteredCoords | |
48 target_centroid=npy.mean(target[targetmask]*weights,axis=0) | |
49 targetCenteredCoords=target-target_centroid | |
50 #print targetCenteredCoords | |
51 #the following steps come from : http://www.pymolwiki.org/index.php/OptAlign#The_Code and http://en.wikipedia.org/wiki/Kabsch_algorithm | |
52 # Initial residual, see Kabsch. | |
53 E0 = npy.sum( npy.sum(refCenteredCoords[refmask] * refCenteredCoords[refmask]*weights,axis=0),axis=0) + npy.sum( npy.sum(targetCenteredCoords[targetmask] * targetCenteredCoords[targetmask]*weights,axis=0),axis=0) | |
54 reftmp=npy.copy(refCenteredCoords[refmask]) | |
55 targettmp=npy.copy(targetCenteredCoords[targetmask]) | |
56 #print refCenteredCoords[refmask] | |
57 #single value decomposition of the dotProduct of both position vectors | |
58 try: | |
59 dotProd = npy.dot( npy.transpose(reftmp), targettmp* weights) | |
60 V, S, Wt = npy.linalg.svd(dotProd ) | |
61 except Exception: | |
62 try: | |
63 dotProd = npy.dot( npy.transpose(reftmp), targettmp) | |
64 V, S, Wt = npy.linalg.svd(dotProd ) | |
65 except Exception: | |
66 print >> sys.stderr,"Couldn't perform the Single Value Decomposition, skipping alignment" | |
67 return ref, 0 | |
68 # we already have our solution, in the results from SVD. | |
69 # we just need to check for reflections and then produce | |
70 # the rotation. V and Wt are orthonormal, so their det's | |
71 # are +/-1. | |
72 reflect = float(str(float(npy.linalg.det(V) * npy.linalg.det(Wt)))) | |
73 if reflect == -1.0: | |
74 S[-1] = -S[-1] | |
75 V[:,-1] = -V[:,-1] | |
76 rmsd = E0 - (2.0 * sum(S)) | |
77 rmsd = npy.sqrt(abs(rmsd / len(ref[refmask]))) #get the rmsd | |
78 #U is simply V*Wt | |
79 U = npy.dot(V, Wt) #get the rotation matrix | |
80 # rotate and translate the molecule | |
81 new_coords = npy.dot((refCenteredCoords), U)+ target_centroid #translate & rotate | |
82 #new_coords=(refCenteredCoords + target_centroid) | |
83 #print U | |
84 if returnRotMat : | |
85 return U, ref_centroid, target_centroid, rmsd | |
86 return new_coords,rmsd | |
87 | |
88 | |
89 def squared_distance(coordsA, coordsB): | |
90 """Find the squared distance between two 3-tuples""" | |
91 sqrdist = sum( (a-b)**2 for a, b in zip(coordsA, coordsB) ) | |
92 return sqrdist | |
93 | |
94 def rmsd(allcoordsA, allcoordsB): | |
95 """Find the RMSD between two lists of 3-tuples""" | |
96 deviation = sum(squared_distance(atomA, atomB) for | |
97 (atomA, atomB) in zip(allcoordsA, allcoordsB)) | |
98 return math.sqrt(deviation / float(len(allcoordsA))) | |
99 | |
100 def mapToCrystal(xtal, pose): | |
101 """Some docking programs might alter the order of the atoms in the output (like Autodock Vina does...) | |
102 this will mess up the rmsd calculation with OpenBabel""" | |
103 query = pybel.ob.CompileMoleculeQuery(xtal.OBMol) | |
104 mapper=pybel.ob.OBIsomorphismMapper.GetInstance(query) | |
105 mappingpose = pybel.ob.vvpairUIntUInt() | |
106 exit=mapper.MapUnique(pose.OBMol,mappingpose) | |
107 return mappingpose[0] | |
108 | |
109 def takeCoords(obmol): | |
110 """Take coordinates of an OBMol as a npy array""" | |
111 return npy.array([atom.coords for atom in obmol]) | |
112 | |
113 def updateCoords(obmol, newcoords): | |
114 "Update OBMol coordinates. newcoords is a numpy array" | |
115 for i,atom in enumerate(obmol): | |
116 atom.OBAtom.SetVector(*newcoords[i]) | |
117 | |
118 def prepareAtomString(idlist): | |
119 s = "" | |
120 n = len(idlist) | |
121 for i, id in enumerate(idlist): | |
122 s += "%i"%id | |
123 if (i+1) == n: s+="\n" | |
124 elif (i+1)%35 == 0: s+=",\n" | |
125 else: s+="," | |
126 return s | |
127 | |
128 | |
129 if __name__ == "__main__": | |
130 import sys | |
131 | |
132 if len(sys.argv) != 5: | |
133 sys.exit("USAGE: %s reference.sdf input.sdf output.sdf 'SMARTS'"%sys.argv[0]) | |
134 | |
135 refsdf = sys.argv[1] | |
136 molsdf = sys.argv[2] | |
137 outsdf = sys.argv[3] | |
138 smarts = pybel.Smarts(sys.argv[4]) | |
139 | |
140 # Read reference pose and get atom list matching smarts query | |
141 # if more than 1 match, take the first one | |
142 ref = next(pybel.readfile("sdf", refsdf)) | |
143 refMatchIds = smarts.findall(ref) | |
144 numRefMatchs = len(refMatchIds) | |
145 | |
146 if not numRefMatchs: | |
147 sys.exit("No match found in the reference structure and the SMARTS string given. Please check it.") | |
148 | |
149 if numRefMatchs > 1: | |
150 print "More than one match in the reference molecule for the SMARTS string given. Will tether each input molecule all possible ways." | |
151 | |
152 refIndxPerMatch = [npy.array(rmi) - 1 for rmi in refMatchIds] | |
153 | |
154 # Take coordinates for the reference matched atoms | |
155 refCoords = takeCoords(ref) | |
156 refMatchCoords = [npy.take(refCoords, refIndx, axis=0) for refIndx in refIndxPerMatch] | |
157 | |
158 # Do the same for molecule in molsdf | |
159 out=pybel.Outputfile('sdf', outsdf, overwrite=True) | |
160 molSupp = pybel.readfile("sdf", molsdf) | |
161 ff = pybel.ob.OBForceField_FindForceField('MMFF94') | |
162 for i,mol in enumerate(molSupp): | |
163 print "## Molecule %i"%(i+1), | |
164 mol.OBMol.DeleteNonPolarHydrogens() | |
165 molMatchAllIds = smarts.findall(mol) | |
166 numMatchs = len(molMatchAllIds) | |
167 | |
168 if numMatchs == 0: | |
169 print "No_Match", | |
170 continue | |
171 elif numMatchs ==1: | |
172 print "Match", | |
173 elif numMatchs > 1: | |
174 print "Multiple_Match SMART Matches for this molecule (%d)"%numMatchs, | |
175 | |
176 # If more than one match, write an output of the same molecule for each match | |
177 # Start a default bestcoord and rmsd for later looping for each pose | |
178 bestCoordPerMatch = [[0 for i in range(numMatchs)] for i in range(numRefMatchs)] | |
179 bestRMSPerMatch = [[999 for i in range(numMatchs)] for i in range(numRefMatchs)] | |
180 | |
181 # Will do a randomrotorsearch to find conformer with the lower rmsd when superposing | |
182 # At least 20 when possible | |
183 #ff.Setup(mol.OBMol) | |
184 #numats = mol.OBMol.NumAtoms() | |
185 #numrot = mol.OBMol.NumRotors() | |
186 #print "Atoms: %i, Rotors: %i"%(numats, numrot) | |
187 #geomopt = 300 | |
188 #genconf = 100 | |
189 # increase iterations if bigger molecule or bigger number of rotatable bonds | |
190 # for allowing better sampling | |
191 #if numats > 40 and numrot > 5: | |
192 # geomopt = 300 | |
193 # genconf = 150 | |
194 #if numats > 55 and numrot > 7: | |
195 # genconf = 100 | |
196 # geomopt = 500 | |
197 #print "\tDoing conformational search with WeightedRotorSearch (%i, %i)..."%(genconf, geomopt), | |
198 #ff.SteepestDescent(500, 1.0e-4) | |
199 #ff.WeightedRotorSearch(genconf,geomopt) | |
200 #ff.ConjugateGradients(500, 1.0e-6) | |
201 #ff.GetConformers(mol.OBMol) | |
202 #numconf = mol.OBMol.NumConformers() | |
203 numconf = 1 | |
204 #print "%i conformers generated"%numconf | |
205 if numconf > 1: | |
206 # Doing conf search | |
207 #for i in range(numconf): | |
208 # mol.OBMol.SetConformer(i) | |
209 # confCoords = takeCoords(mol) | |
210 # print 'coord:',confCoords[0,:] | |
211 # | |
212 # for imatch, molMatchIds in enumerate(molMatchAllIds): | |
213 # molMatchIndx = npy.array(molMatchIds) - 1 | |
214 # confMatchCoords = npy.take(confCoords, molMatchIndx, axis=0) | |
215 # | |
216 # # Align: Get rotation matrix between the two sets of coords | |
217 # # Apply rotation to the whole target molecule | |
218 # rotMat, targetCentroid, refCentroid, rmsd = superpose3D(confMatchCoords, refMatchCoords, returnRotMat=True) | |
219 # if rmsd < bestRMSPerMatch[imatch]: | |
220 # newcoords = npy.dot((confCoords - targetCentroid), rotMat) + refCentroid | |
221 # bestRMSPerMatch[imatch] = rmsd | |
222 # bestCoordPerMatch[imatch] = newcoords | |
223 # #if bestrms < 0.01: break | |
224 pass | |
225 else: | |
226 molCoords = takeCoords(mol) | |
227 for imatch, molMatchIds in enumerate(molMatchAllIds): | |
228 # loop in each matching way for the input molecule | |
229 molMatchIndx = npy.array(molMatchIds) - 1 | |
230 molMatchCoords = npy.take(molCoords, molMatchIndx, axis=0) | |
231 | |
232 # Loop over the reference matches | |
233 # Align: Get rotation matrix between the two sets of coords | |
234 # Apply rotation to the whole target molecule | |
235 for ir, refMatchCoord in enumerate(refMatchCoords): | |
236 rotMat, targetCentroid, refCentroid, rmsd = superpose3D(molMatchCoords, refMatchCoord, returnRotMat=True) | |
237 if rmsd < bestRMSPerMatch[ir][imatch]: | |
238 newcoords = npy.dot((molCoords - targetCentroid), rotMat) + refCentroid | |
239 bestRMSPerMatch[ir][imatch] = rmsd | |
240 bestCoordPerMatch[ir][imatch] = newcoords | |
241 | |
242 # Finally update molecule coordinates with the best matching coordinates found | |
243 # change molecule coordinates, set TETHERED ATOMS property and save | |
244 for imatch in range(numMatchs): | |
245 for irefmatch in range(numRefMatchs): | |
246 bestCoord = bestCoordPerMatch[irefmatch][imatch] | |
247 bestRMS = bestRMSPerMatch[irefmatch][imatch] | |
248 print "\tBest RMSD reached (match %d, refmatch %d): %s"%(imatch, irefmatch, bestRMS) | |
249 molMatchID = molMatchAllIds[imatch] | |
250 updateCoords(mol, bestCoord) | |
251 newData = pybel.ob.OBPairData() | |
252 newData.SetAttribute("TETHERED ATOMS") | |
253 newData.SetValue(prepareAtomString(molMatchID)) | |
254 | |
255 mol.OBMol.DeleteData("TETHERED ATOMS") # Remove Previous DATA | |
256 mol.OBMol.CloneData(newData) # Add new data | |
257 out.write(mol) | |
258 | |
259 out.close() | |
260 | |
261 print "DONE" | |
262 sys.stdout.close() | |
263 sys.stderr.close() |