Mercurial > repos > marpiech > rnaseq_pro_workflow_tools
view tools/script.R @ 3:db5d126bf8d0 draft
planemo upload
author | marpiech |
---|---|
date | Thu, 22 Dec 2016 18:19:53 -0500 |
parents | c5a812cdf478 |
children |
line wrap: on
line source
#!/usr/bin/env Rscript args = commandArgs(TRUE) countDataPath = args[1] statsDataPath = args[2] logFC = args[3] logCPM = args[4] pValue = args[5] fdr = args[6] clusterRow = args[7] clusterCol = args[8] hclustMethod = args[9] mgColumnNm = as.numeric(args[10]) mgRowNm = as.numeric(args[11]) pdfWidth = as.numeric(args[12]) pdfHeight = as.numeric(args[13]) if(clusterRow == "Yes"){ clusterRow = TRUE } else { clusterRow = NA } if(clusterCol == "Yes"){ clusterCol = TRUE } else { clusterCol = NA } require(preprocessCore) require(gplots) #prepare counts data -------------------------------------------------------- countData = read.table(countDataPath, comment = "", sep = "\t") groups = sapply(as.character(countData[1, -1]), strsplit, ":") groups = as.vector(t(countData[1, -1])) names = as.vector(t(countData[2, -1])) countData = countData[-c(1,2), ] rownames(countData) = countData[, 1] countData = countData[, -1] colnames(countData) = names countData = countData[, order(groups, names)] # prepare stats data ------------------------------------------------------ statsData = read.table(statsDataPath, sep = "\t", header = T) colnames(statsData)[-1] = sapply(colnames(statsData)[-1], function(x){ unlist(strsplit(x, ".", fixed = T))[3] }) wh = which(abs(statsData$logFC) >= logFC & statsData$logCPM >= logCPM & statsData$PValue <= pValue & statsData$FDR <= fdr) for(i in 1:ncol(countData)){ countData[,i] = as.numeric(countData[,i]) } countDataNorm = normalize.quantiles(as.matrix(countData), copy = T) countDataNormLog = log(countDataNorm + 1, 2) colnames(countDataNormLog) = colnames(countData) rownames(countDataNormLog) = rownames(countData) #svg("heatmap.svg", width = 3+length(names), height = 1/2*length(wh)) pdf("heatmap.pdf", width = pdfWidth, height = pdfHeight) heatmap.2( countDataNormLog[wh, ], density.info=c("none"), hclustfun = function(x) hclust(x, method = hclustMethod), distfun = function(x) as.dist(1-cor(t(x))), col = bluered(50), scale = "row", trace = "none", Rowv = clusterRow, Colv = clusterCol, margins = c(mgColumnNm, mgRowNm) ) dev.off()