Mercurial > repos > martasampaio > phagepromoter
view phagepromoter.py @ 13:8b9534a83ae2 draft
Uploaded
author | martasampaio |
---|---|
date | Sat, 20 Apr 2019 11:03:04 -0400 |
parents | 30b5e33eca40 |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Thu Jul 19 13:45:05 2018 @author: Marta """ from Bio import SeqIO import numpy as np import pandas as pd from auxiliar import free_energy,freq_base from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.Alphabet import IUPAC from auxiliar import get_bacteria, get_families, get_max_pssm, get_scores, get_lifecycle #division of the test genome in sequences of 65 bp def get_testseqs65(form,fic,both=False): ALL = [] indexes = [] a = 0 rec = SeqIO.read(fic,form) genome = rec.seq i = 0 j = 65 while j < len(genome): s = genome[i:j] ALL.append([1,i,j,s]) i += 20 j += 20 a += 1 indexes.append(rec.name+":"+str(a)) if both: comp = genome.reverse_complement() size = len(rec.seq) i = 0 j = 65 while j < len(comp): s = comp[i:j] ALL.append([-1,size-j,size-i,s]) i += 20 j += 20 a += 1 indexes.append(rec.name+":"+str(a)) df = pd.DataFrame(ALL, index=indexes, columns=['strand','iniprom','endprom','seq']) return df #calculate the scores of all sequences (similar to get_posScores and get_negScores) def get_testScores(loc,test): scores = [] posis = [] sizes = [] dic = {} for ind,row in test.iterrows(): _,window = ind.split(':') strand = row['strand'] ini = row['iniprom'] end = row['endprom'] seq = row['seq'] pos = [ini,end,strand] dic[window] = pos s = seq score10_6,pos10_6 = get_scores(os.path.join(loc,'pssm10_6.txt'), s) maxi10_6 = get_max_pssm(os.path.join(loc,'pssm10_6.txt')) score10_8,pos10_8 = get_scores(os.path.join(loc,'pssm10_8.txt'), s) maxi10_8 = get_max_pssm(os.path.join(loc,'pssm10_8.txt')) scores23,pos23 = get_scores(os.path.join(loc,'pssm_23.txt'), s) maxi23 = get_max_pssm(os.path.join(loc,'pssm_23.txt')) scores21,pos21 = get_scores(os.path.join(loc,'pssm_21.txt'), s) maxi21 = get_max_pssm(os.path.join(loc,'pssm_21.txt')) scores27,pos27 = get_scores(os.path.join(loc,'pssm_27.txt'), s) maxi27 = get_max_pssm(os.path.join(loc,'pssm_27.txt')) scores32,pos32 = get_scores(os.path.join(loc,'pssm_32.txt'), s) maxi32 = get_max_pssm(os.path.join(loc,'pssm_32.txt')) score23 = max(scores23) score21 = max(scores21) score27 = max(scores27) score32 = max(scores32) maxiphage = max(score23,score21,score27,score32) if maxiphage == score23: phage_max = score23*maxi23 elif maxiphage == score21: phage_max = score21*maxi21 elif maxiphage == score27: phage_max = score27*maxi27 elif maxiphage == score32: phage_max = score32*maxi32 score35_6,pos35_6 = get_scores(os.path.join(loc,'pssm35_6.txt'), s) maxi35_6 = get_max_pssm(os.path.join(loc,'pssm35_6.txt')) score35_9,pos35_9 = get_scores(os.path.join(loc,'pssm35_9.txt'), s) maxi35_9 = get_max_pssm(os.path.join(loc,'pssm35_9.txt')) score35_t4,pos35_t4 = get_scores(os.path.join(loc,'pssm35_t4.txt'), s) maxi35_t4 = get_max_pssm(os.path.join(loc,'pssm35_t4.txt')) score35_cbb,pos35_cbb = get_scores(os.path.join(loc,'pssm35_cbb.txt'), s) maxi35_cbb = get_max_pssm(os.path.join(loc,'pssm35_cbb.txt')) score35_lb,pos35_lb = get_scores(os.path.join(loc,'pssm35_lb.txt'),s) maxi35_lb = get_max_pssm(os.path.join(loc,'pssm35_lb.txt')) score35_mu, pos35_mu = get_scores(os.path.join(loc,'pssm35_mu.txt'),s) maxi35_mu = get_max_pssm(os.path.join(loc,'pssm35_mu.txt')) dists6 = [] score6 = [] for p in pos10_6: for a in range(14,22): d = p-a-6 if d >= 0: s10 = score10_6[p] s35_6 = score35_6[d] score6.append([s35_6,s10]) dists6.append([d,p]) dists9 = [] score9 = [] for p in pos10_6: for a in range(11,14): d = p-a-9 if d >= 0: s10 = score10_6[p] s35_9 = score35_9[d] score9.append([s35_9,s10]) dists9.append([d,p]) distst4 = [] scoret4 = [] distscbb = [] scorecbb = [] for p in pos10_6: for a in range(16,18): d = p-a-7 if d >= 0: s10 = score10_6[p] s35_t4 = score35_t4[d] s35_cbb = score35_cbb[d] scoret4.append([s35_t4,s10]) distst4.append([d,p]) scorecbb.append([s35_cbb,s10]) distscbb.append([d,p]) distsmu = [] scoremu = [] for p in pos10_6: d = p-16-14 if d >= 0: s10 = score10_6[p] s35_mu = score35_mu[d] scoremu.append([s35_mu,s10]) distsmu.append([d,p]) distslb = [] scorelb = [] for p in pos10_6: d = p-13-14 if d >= 0: s10 = score10_6[p] s35_lb = score35_lb[d] scorelb.append([s35_lb,s10]) distslb.append([d,p]) soma6 = [sum(x) for x in score6] soma9 = [sum(x) for x in score9] somat4 = [sum(x) for x in scoret4] somacbb = [sum(x) for x in scorecbb] somamu = [sum(x) for x in scoremu] somalb = [sum(x) for x in scorelb] maxi6 = max(soma6) maxi9 = max(soma9) maxit4 = max(somat4) maxicbb = max(somacbb) maximu = max(somamu) maxilb = max(somalb) maxi_elems = max(maxi6,maxi9,maxit4,maxicbb,maxilb,maximu) if maxi_elems == maxilb: indmax = somalb.index(maxilb) sc35 = scorelb[indmax][0] sc10 = scorelb[indmax][1] score_elems = [sc35,sc10] posel = distslb[indmax] size35 = 14 elems_maxi = sc35*maxi35_lb+sc10*maxi10_6 elif maxi_elems == maximu: indmax = somamu.index(maximu) sc35 = scoremu[indmax][0] sc10 = scoremu[indmax][1] score_elems = [sc35,sc10] posel = distsmu[indmax] size35 = 14 elems_maxi = sc35*maxi35_mu+sc10*maxi10_6 elif maxi_elems == maxi9: indmax = soma9.index(maxi9) sc35 = score9[indmax][0] sc10 = score9[indmax][1] score_elems = [sc35,sc10] posel = dists9[indmax] size35 = 9 elems_maxi = sc35*maxi35_9+sc10*maxi10_6 elif maxi_elems == maxit4: indmax = somat4.index(maxit4) sc35 = scoret4[indmax][0] sc10 = scoret4[indmax][1] score_elems = [sc35,sc10] posel = distst4[indmax] size35 = 7 elems_maxi = sc35*maxi35_t4+sc10*maxi10_6 elif maxi_elems == maxicbb: indmax = somacbb.index(maxicbb) sc35 = scorecbb[indmax][0] sc10 = scorecbb[indmax][1] score_elems = [sc35,sc10] posel = distscbb[indmax] size35 = 7 elems_maxi = sc35*maxi35_cbb+sc10*maxi10_6 else: indmax = soma6.index(maxi6) sc35 = score6[indmax][0] sc10 = score6[indmax][1] score_elems = [sc35,sc10] posel = dists6[indmax] size35 = 6 elems_maxi = sc35*maxi35_6+sc10*maxi10_6 if score23 == maxiphage: phage_score = score23 posiphage = scores23.index(score23) sizephage = 23 elif score21 == maxiphage: phage_score = score21 posiphage = scores21.index(score21) sizephage = 21 elif score27 == maxiphage: phage_score = score27 posiphage = scores27.index(score27) sizephage = 27 else: phage_score = score32 posiphage = scores32.index(score32) sizephage = 32 if elems_maxi >= max(score10_8)*maxi10_8: i = posel[1] ext = s[i-3:i-1] if ext == 'TG': tg = 1 else: tg = 0 if elems_maxi > phage_max: host = 1 else: host = 0 tg = 0 sc = max(score10_8) end35 = posel[0]+size35 dist = posel[1]-end35 scores.append([host, score_elems[1],sc,score_elems[0],phage_score,tg,dist,str(seq)]) posis.append([posel[1],posel[0],posiphage]) sizes.append([6,size35,sizephage]) else: host = 1 sc = max(score10_8) i = score10_8.index(sc) ext = s[i-3:i-1] if ext == 'TG': tg = 1 else: tg = 0 if max(score10_8)*maxi10_8 > phage_max: host = 1 else: host = 0 tg = 0 end35 = posel[0]+size35 dist = posel[1]-end35 scores.append([host,score_elems[1],sc,score_elems[0],phage_score,tg,dist,str(seq)]) posis.append([i,posel[0],posiphage]) sizes.append([8,size35,sizephage]) score = pd.DataFrame(scores, index=test.index, columns=['host','score10','score10_8','score35','score_phage','tg','dist','seq']) posis = pd.DataFrame(posis, index=test.index, columns=['pos10','pos35','posphage']) sizes = pd.DataFrame(sizes, index=test.index, columns=['size10','size35','size_phage']) df_all = pd.concat([score,posis,sizes],axis=1) return df_all,dic def create_dftest(scores_test,dic_window,family,bacteria,lifecycle): tudo = [] tudo2 = [] for ind,row in scores_test.iterrows(): _,window = ind.split(':') posis = dic_window[window] strand=posis[2] if strand == 1: ini=posis[0] else: ini=posis[1] seqprom = row['seq'] score10 = row['score10'] score10_8 = row['score10_8'] score35 = row['score35'] scorephage = row['score_phage'] size10 = row['size10'] size35 = row['size35'] sizephage = row['size_phage'] ini10 = row['pos10'] tg = row['tg'] host = row['host'] ini35 = row['pos35'] dist = row['dist'] end10=ini10+size10 iniphage = row['posphage'] endphage = iniphage+sizephage if strand == 1: if host == 0: new_seq = seqprom[iniphage:endphage] new_ini = ini+iniphage+1 new_end = ini+endphage else: if size10 == 6: new_seq = seqprom[ini35:end10] new_ini = ini+ini35+1 new_end = ini+end10 else: new_seq = seqprom[ini10:end10] new_ini = ini+ini10+1 new_end = ini+end10 new_pos = '('+str(new_ini)+'..'+str(new_end)+')' else: if host == 0: new_seq = seqprom[iniphage:endphage] new_ini = ini-endphage+1 new_end = ini-iniphage else: if size10 == 6: new_seq = seqprom[ini35:end10] new_ini = ini-end10+1 new_end = ini-ini35 else: new_seq = seqprom[ini10:end10] new_ini = ini-end10+1 new_end = ini-ini10 new_pos = 'complement('+str(new_ini)+'..'+str(new_end)+')' if size10 == 6: size10_6 = 1 else: size10_6 = 0 if size35 == 6: size35_6 = 1 size35_7 = 0 size35_9 = 0 size35_14 = 0 elif size35 == 7: size35_6 = 0 size35_7 = 1 size35_9 = 0 size35_14 = 0 elif size35 == 9: size35_6 = 0 size35_7 = 0 size35_9 = 1 size35_14 = 0 else: size35_6 = 0 size35_7 = 0 size35_9 = 0 size35_14 = 1 if sizephage == 23: sizephage_23 = 1 sizephage_21 = 0 sizephage_32 = 0 elif sizephage == 21: sizephage_23 = 0 sizephage_21 = 1 sizephage_32 = 0 elif sizephage == 32: sizephage_23 = 0 sizephage_21 = 0 sizephage_32 = 1 else: sizephage_23 = 0 sizephage_21 = 0 sizephage_32 = 0 if family == 'Podoviridae': Podo = 1 Sipho = 0 Myo = 0 elif family == 'Siphoviridae': Podo = 0 Sipho = 1 Myo = 0 elif family == 'Myoviridae': Podo = 0 Sipho = 0 Myo = 1 else: Podo = 0 Sipho = 0 Myo = 0 if bacteria == 'Bacillus': bac = [1,0,0,0,0] elif bacteria == 'Escherichia coli': bac = [0,1,0,0,0] elif bacteria == 'Klebsiella': bac = [0,0,1,0,0] elif bacteria == 'Pectobacterium': bac = [0,0,0,1,0] elif bacteria == 'Cronobacter': bac = [0,0,0,0,1] else: bac = [0,0,0,0,0] if lifecycle == 'virulent': tp = 0 else: tp = 1 fe = free_energy(str(seqprom)) AT = freq_base(str(seqprom)) linha = [score10, score10_8, score35, dist, scorephage, fe, AT, host,size10_6, size35_6, size35_7, size35_9, size35_14, sizephage_23, sizephage_21, sizephage_32, tg, Podo, Sipho, Myo,tp] linha.extend(bac) tudo.append(linha) linha2 = [new_pos,str(new_seq), host, size10_6, score10, score10_8, size35_6, size35_7, size35_9,size35_14, score35, dist, sizephage_23, sizephage_21, sizephage_32, scorephage, tg, Podo, Sipho, Myo,tp, fe, AT] linha2.extend(bac) tudo2.append(linha2) df_test = pd.DataFrame(tudo, index=scores_test.index, columns = ['score10', 'score10_8','score35', 'dist35_10', 'scorephage','fe', 'freqAT', 'host','size10', 'size35_6', 'size35_7','size35_9','size35_14', 'sizephage_23', 'sizephage_21', 'sizephage_32', 'TG', 'Podo', 'Sipho', 'Myo', 'tp', 'Bacillus', 'EColi', 'Pectobacterium','Klebsiella', 'Cronobacter']) df_INFO = pd.DataFrame(tudo2, index=scores_test.index, columns = ['Positions','Promoter Sequence','host','size10', 'score10', 'score10_8', 'size35_6', 'size35_7','size35_9','size35_14', 'score35', 'dist35_10','sizephage_23', 'sizephage_21', 'sizephage_32', 'scorephage', 'TG', 'Podo', 'Sipho', 'Myo', 'tp','fe', 'freqAT', 'EColi', 'Salmonella', 'Pectobacterium','Cronobacter', 'Streptococcus']) return df_test,df_INFO def get_predictions(scaler_file,model_file,test,df_testinfo,threshold): from sklearn.externals import joblib scaler = joblib.load(scaler_file) model = joblib.load(model_file) feat_scaled = pd.DataFrame(scaler.transform(test.iloc[:,:7]),index =test.index, columns=test.columns[:7]) TEST_scaled = pd.concat([feat_scaled,test.iloc[:,7:]],axis=1) scores = model.predict_proba(TEST_scaled) pos_scores = np.empty((TEST_scaled.shape[0],0), float) for x in scores: pos_scores = np.append(pos_scores,x[1]) try: positive_indexes = np.nonzero(pos_scores>float(threshold))[0] #escolher os positivos, podia ser escolher com score > x except ValueError: return 'The threshold value is not a float' else: if len(positive_indexes) == 0: return None else: positive_windows = TEST_scaled.index[positive_indexes] INFO = df_testinfo.loc[positive_windows,['Positions','Promoter Sequence']] promoter_type = [] for x in df_testinfo.loc[positive_windows,'host'].tolist(): if x == 0: promoter_type.append('phage') else: promoter_type.append('host') INFO['Type'] = promoter_type INFO['Scores'] = np.around(pos_scores[positive_indexes],decimals=3) INFO.index = positive_windows return INFO def get_finaldf(test,rec): new_df = test.groupby(['Positions']) groups = list(new_df.groups.keys()) for i in range(len(groups)-1): for j in range(i, len(groups)): if 'complement' in groups[i]: inii = int(groups[i][11:].split('..')[0]) else: inii = int(groups[i][1:].split('..')[0]) if 'complement' in groups[j]: inij = int(groups[j][11:].split('..')[0]) else: inij = int(groups[j][1:].split('..')[0]) if inij < inii: temp = groups[i] groups[i] = groups[j] groups[j] = temp new_inds = [] for g in groups: inds = new_df.groups[g] if len(inds) == 1: new_inds.append(inds[0]) else: maxi = max(new_df.get_group(g)['Scores']) i = new_df.groups[g][new_df.get_group(g)['Scores']==maxi][0] new_inds.append(i) output = test.loc[new_inds,:] strands = [] new_pos = [] old_pos = output['Positions'].tolist() from Bio.SeqFeature import SeqFeature, FeatureLocation feats = rec.features for ind, row in output.iterrows(): pos = row['Positions'] if 'complement' in pos: strands.append('-') new_pos.append(pos[10:]) ini,end= pos[11:-1].split('..') new_loc = FeatureLocation(int(ini),int(end),strand=-1) else: strands.append('+') new_pos.append(pos) ini,end= pos[1:-1].split('..') new_loc = FeatureLocation(int(ini),int(end),strand=1) feat = SeqFeature(new_loc, type='regulatory',qualifiers={'regulatory_class':['promoter'], 'note=':['predicted by PhagePromoter']}) feats.append(feat) output.insert(loc=0, column='Strand', value=strands) output['Positions'] = new_pos output.to_html('output.html',index=False, justify='center') recs = [] i = 0 for ind,row in output.iterrows(): s = Seq(row['Promoter Sequence']) posis = old_pos[i] typ = row['Type'] score = row['Scores'] sq = SeqRecord(seq=s, id=ind, description=typ+' '+posis+' score='+str(score)) recs.append(sq) i += 1 SeqIO.write(recs, 'output.fasta','fasta') new_rec = rec new_rec.seq.alphabet = IUPAC.IUPACAmbiguousDNA() new_feats = sorted(feats, key=lambda x: x.location.start) new_rec.features = new_feats SeqIO.write(new_rec,'output.gb','genbank') if __name__== "__main__": import sys import os __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) gen_format = sys.argv[1] genome_file = sys.argv[2] both = sys.argv[3] threshold = sys.argv[4] family = sys.argv[5] host = sys.argv[6] phage_type = sys.argv[7] model = sys.argv[8] ''' gen_format = 'genbank' genome_file = 'test-data/NC_015264.gb' both = False threshold = '0.50' family = 'Podoviridae' host = 'Pseudomonas' phage_type = 'virulent' model = 'SVM2400' #model = 'ANN1600' ''' rec = SeqIO.read(genome_file, gen_format) test_windows = get_testseqs65(gen_format, genome_file,both) try: score_test,dic_window = get_testScores(__location__,test_windows) except IndexError: print('Error. Input sequence can only have A,C,G or T') else: df_test,df_testinfo = create_dftest(score_test,dic_window,family,host,phage_type) if model == 'ANN1600': scaler_file = os.path.join(__location__, 'scaler1600.sav') model_file = os.path.join(__location__, 'model1600.sav') preds = get_predictions(scaler_file, model_file, df_test,df_testinfo,threshold) if preds is None: print('There is no sequence with a score value higher or equal to the threshold '+str(threshold)) elif type(preds) == str: print(preds) else: output = get_finaldf(preds,rec) else: scaler_file = os.path.join(__location__, 'scaler2400.sav') model_file = os.path.join(__location__, 'model2400.sav') new_df_test = df_test.iloc[:,[0,1,2,3,4,5,6,7,8,9,13,14,16,17,19,20,22,24,25]] preds = get_predictions(scaler_file, model_file, new_df_test,df_testinfo,threshold) if preds is None: print('There is no sequence with a score value higher or equal to the threshold '+str(threshold)) elif type(preds) == str: print(preds) else: output = get_finaldf(preds,rec)