comparison pfam_annot/pro @ 0:68a3648c7d91 draft default tip

Uploaded
author matteoc
date Thu, 22 Dec 2016 04:45:31 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:68a3648c7d91
1 <html>
2 <head></head>
3 <body>
4 Proteins with PFAM domains:
5 <br><br>
6 <div>
7 <table cellpadding="0" width=650>
8 <td>
9 <HR SIZE=3 WIDTH=80%>
10 <center><b>PROKKA_00001</b><br>
11 </center>
12 </td
13 <tr></tr>
14 <td bgcolor="#czb9dz">
15 <pre>
16 MENNLENLTIGVFAKAAGVNVETIRFYQRKGLLREPDKPYGSIRRYGEADVVRVKFVKSAQRLGFSLDEIAELLRLDDGTHCEEASSLAE
17 HKLKDVREKMADLARMETVLSELVCACHARKGNVSCPLIASLQGEAGLARSAMP
18
19 </pre>
20 </td>
21 <tr></tr>
22 <td></td>
23 <tr></tr>
24 <td>
25 <p align="left">
26 <a href=http://pfam.xfam.org/family/PF00376> PF00376</a>
27 <p align="justify">merR; <br>MerR family regulatory protein. Prosite & Pfam-B_3021 (Release 7.5). </p>
28
29 </p>
30 </td>
31 <tr></tr>
32 <td></td>
33 <tr></tr>
34 <td bgcolor="#czb9dz">
35 <p align="left">
36 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
37 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
38
39 </p>
40 </td>
41 <tr></tr>
42 <td></td>
43 <tr></tr>
44 <td>
45 <p align="left">
46 <a href=http://pfam.xfam.org/family/PF09278> PF09278</a>
47 <p align="justify">MerR, DNA binding<br>Members of this family of DNA-binding domains are predominantly found in the prokaryotic transcriptional regulator MerR. They adopt a structure consisting of a core of three alpha helices, with an architecture that is similar to that of the 'winged helix' fold .. </p>
48
49 </p>
50 </td>
51 <tr></tr>
52 <td></td>
53 <tr></tr>
54 <td bgcolor="#czb9dz">
55 <p align="left">
56 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
57 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
58
59 </p>
60 </td>
61 <tr></tr>
62 <td></td>
63 <tr></tr>
64 <td>
65 <HR SIZE=3 WIDTH=80%>
66 <center><b>PROKKA_00002</b><br>
67 </center>
68 </td
69 <tr></tr>
70 <td bgcolor="#czb9dz">
71 <pre>
72 MSEPQNGRGALFAGGLAAILASTCCLGPLVLVALGFSGAWIGNLTVLEPYRPLFIGAALVALFFAWKRIYRPVQACKPGEVCAIPQVRAT
73 YKLIFWIVAVLVLVALGFPYVVPFFY
74
75 </pre>
76 </td>
77 <tr></tr>
78 <td></td>
79 <tr></tr>
80 <td>
81 <p align="left">
82 <a href=http://pfam.xfam.org/family/PF02411> PF02411</a>
83 <p align="justify">MerT mercuric transport protein<br>Pfam-B_1796 (release 5.4). MerT is an mercuric transport integral membrane protein and is responsible for transport of the Hg2+ iron from periplasmic MerP (also part of the transport system) to mercuric reductase (MerE).. </p>
84
85 </p>
86 </td>
87 <tr></tr>
88 <td></td>
89 <tr></tr>
90 <td>
91 <HR SIZE=3 WIDTH=80%>
92 <center><b>PROKKA_00003</b><br>
93 </center>
94 </td
95 <tr></tr>
96 <td bgcolor="#czb9dz">
97 <pre>
98 MKKLFASLALAAAVAPVWAATQTVTLAVPGMTCAACPITVKKALSKVEGVSKVDVGFEKREAVVTFDDTKASVQKLTKATADAGYPSSVK
99 Q
100
101 </pre>
102 </td>
103 <tr></tr>
104 <td></td>
105 <tr></tr>
106 <td>
107 <p align="left">
108 <a href=http://pfam.xfam.org/family/PF00403> PF00403</a>
109 <p align="justify">Heavy-metal-associated domain<br></p>
110
111 </p>
112 </td>
113 <tr></tr>
114 <td></td>
115 <tr></tr>
116 <td>
117 <HR SIZE=3 WIDTH=80%>
118 <center><b>PROKKA_00004</b><br>
119 </center>
120 </td
121 <tr></tr>
122 <td bgcolor="#czb9dz">
123 <pre>
124 MGLMTRIADKTGALGSVVSAMGCAACFPALASFGAAIGLGFLSQYEGLFISRLLPLFAALAFLANALGWFSHRQWLRSLLGMIGPAIVFA
125 ATVWLLGNWWTANLMYVGLALMIGVSIWDFVSPAHRRCGPDGCELPAKRL
126
127 </pre>
128 </td>
129 <tr></tr>
130 <td></td>
131 <tr></tr>
132 <td>
133 <p align="left">
134 <a href=http://pfam.xfam.org/family/PF03203> PF03203</a>
135 <p align="justify">MerC mercury resistance protein<br>Pfam-B_2720 (release 6.5). </p>
136
137 </p>
138 </td>
139 <tr></tr>
140 <td></td>
141 <tr></tr>
142 <td>
143 <HR SIZE=3 WIDTH=80%>
144 <center><b>PROKKA_00005</b><br>
145 </center>
146 </td
147 <tr></tr>
148 <td bgcolor="#czb9dz">
149 <pre>
150 MSTLKITGMTCDSCAVHVKDALEKVPGVQSADVSYAKGSAKLAIEVGTSPDALTAAVAGLGYRATLADAPSVSTPGGLLDKMRDLLGRND
151 KTGSSGALHIAVIGSGGAAMAAALKAVEQGARVTLIERGTIGGTCVNVGCVPSKIMIRAAHIAHLRRESPFDGGIAATTPTIQRTALLAQ
152 QQARVDELRHAKYEGILEGNPAITVLHGSARFKDNRNLIVQLNDGGERVVAFDRCLIATGASPAVPPIPGLKDTPYWTSTEALVSETIPK
153 RLAVIGSSVVALELAQAFARLGAKVTILARSTLFFREDPAIGEAVTAAFRMEGIEVREHTQASQVAYINGEGDGEFVLTTAHGELRADKL
154 LVATGRAPNTRKLALDATGVTLTPQGAIVIDPGMRTSVEHIYAAGDCTDQPQFVYVAAAAGTRAAINMTGGDAALNLTAMPAVVFTDPQV
155 ATVGYSEAEAHHDGIKTDSRTLTLDNVPRALANFDTRGFIKLVVEEGSGRLIGVQAVAPEAGELIQTAALAIRNRMTVQELADQLFPYLT
156 MVEGLKLAAQTFNKDVKQLSCCAG
157
158 </pre>
159 </td>
160 <tr></tr>
161 <td></td>
162 <tr></tr>
163 <td>
164 <p align="left">
165 <a href=http://pfam.xfam.org/family/PF00403> PF00403</a>
166 <p align="justify">Heavy-metal-associated domain<br></p>
167
168 </p>
169 </td>
170 <tr></tr>
171 <td></td>
172 <tr></tr>
173 <td bgcolor="#czb9dz">
174 <p align="left">
175 <a href=http://pfam.xfam.org/family/PF07992> PF07992</a>
176 <p align="justify">Pyridine nucleotide-disulphide oxidoreductase<br>This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. This domain is actually a small NADH binding domain within a larger FAD binding domain.. </p>
177
178 </p>
179 </td>
180 <tr></tr>
181 <td></td>
182 <tr></tr>
183 <td>
184 <p align="left">
185 <a href=http://pfam.xfam.org/clan/CL0063> CL0063</a>
186 <p align="justify">FAD/NAD(P)-binding Rossmann fold Superfamily A class of redox enzymes are two domain proteins. One domain, termed the catalytic domain, confers substrate specificity and the precise reaction of the enzyme. The other domain, which is common to this class of redox enzymes, is a Rossmann-fold domain. The Rossmann domain binds nicotinamide adenine dinucleotide (NAD+) and it is this cofactor that reversibly accepts a hydride ion, which is lost or gained by the substrate in the redox reaction. Rossmann domains have an alpha/beta fold, which has a central beta sheet, with approximately five alpha helices found surrounding the beta sheet.The strands forming the beta sheet are found in the following characteristic order 654123. The inter sheet crossover of the stands in the sheet form the NAD+ binding site . In some more distantly relate Rossmann domains the NAD+ cofactor is replaced by the functionally similar cofactor FAD. </p>
187
188 </p>
189 </td>
190 <tr></tr>
191 <td></td>
192 <tr></tr>
193 <td bgcolor="#czb9dz">
194 <p align="left">
195 <a href=http://pfam.xfam.org/family/PF00070> PF00070</a>
196 <p align="justify">pyr_redox; <br>Pyridine nucleotide-disulphide oxidoreductase. This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. This domain is actually a small NADH binding domain within a larger FAD binding domain.. </p>
197
198 </p>
199 </td>
200 <tr></tr>
201 <td></td>
202 <tr></tr>
203 <td>
204 <p align="left">
205 <a href=http://pfam.xfam.org/clan/CL0063> CL0063</a>
206 <p align="justify">FAD/NAD(P)-binding Rossmann fold Superfamily A class of redox enzymes are two domain proteins. One domain, termed the catalytic domain, confers substrate specificity and the precise reaction of the enzyme. The other domain, which is common to this class of redox enzymes, is a Rossmann-fold domain. The Rossmann domain binds nicotinamide adenine dinucleotide (NAD+) and it is this cofactor that reversibly accepts a hydride ion, which is lost or gained by the substrate in the redox reaction. Rossmann domains have an alpha/beta fold, which has a central beta sheet, with approximately five alpha helices found surrounding the beta sheet.The strands forming the beta sheet are found in the following characteristic order 654123. The inter sheet crossover of the stands in the sheet form the NAD+ binding site . In some more distantly relate Rossmann domains the NAD+ cofactor is replaced by the functionally similar cofactor FAD. </p>
207
208 </p>
209 </td>
210 <tr></tr>
211 <td></td>
212 <tr></tr>
213 <td bgcolor="#czb9dz">
214 <p align="left">
215 <a href=http://pfam.xfam.org/family/PF02852> PF02852</a>
216 <p align="justify">pyr_redox_dim; <br>Pyridine nucleotide-disulphide oxidoreductase, dimerisation domain. This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases.. </p>
217
218 </p>
219 </td>
220 <tr></tr>
221 <td></td>
222 <tr></tr>
223 <td>
224 <HR SIZE=3 WIDTH=80%>
225 <center><b>PROKKA_00006</b><br>
226 </center>
227 </td
228 <tr></tr>
229 <td bgcolor="#czb9dz">
230 <pre>
231 MSAYTVSQLAHNAGVSVHIVRDYLVRGLLRPVACTTGGYGVFDDAALQRLCFVRAAFEAGIGLDALARLCRALDAADGAQAAAQLAVLRQ
232 LVERRRAALAHLDAQLASMPAERAHEEALP
233
234 </pre>
235 </td>
236 <tr></tr>
237 <td></td>
238 <tr></tr>
239 <td>
240 <p align="left">
241 <a href=http://pfam.xfam.org/family/PF13411> PF13411</a>
242 <p align="justify">MerR HTH family regulatory protein<br></p>
243
244 </p>
245 </td>
246 <tr></tr>
247 <td></td>
248 <tr></tr>
249 <td bgcolor="#czb9dz">
250 <p align="left">
251 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
252 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
253
254 </p>
255 </td>
256 <tr></tr>
257 <td></td>
258 <tr></tr>
259 <td>
260 <HR SIZE=3 WIDTH=80%>
261 <center><b>PROKKA_00007</b><br>
262 </center>
263 </td
264 <tr></tr>
265 <td bgcolor="#czb9dz">
266 <pre>
267 VNAPDKLPPETRQPVSGYLWGALAVLTCPCHLPILAAVLAGTTAGAFLGEHWGVAALALTGLFVLAVTRLLRAFRGGS
268
269 </pre>
270 </td>
271 <tr></tr>
272 <td></td>
273 <tr></tr>
274 <td>
275 <p align="left">
276 <a href=http://pfam.xfam.org/family/PF05052> PF05052</a>
277 <p align="justify">MerE protein<br>Pfam-B_5840 (release 7.7). The prokaryotic MerE (or URF-1) protein is part of the mercury resistance operon. The protein is thought not to have any direct role in conferring mercury resistance to the organism but may be a mercury resistance transposon [1,2]. . </p>
278
279 </p>
280 </td>
281 <tr></tr>
282 <td></td>
283 <tr></tr>
284 <td>
285 <HR SIZE=3 WIDTH=80%>
286 <center><b>PROKKA_00008</b><br>
287 </center>
288 </td
289 <tr></tr>
290 <td bgcolor="#czb9dz">
291 <pre>
292 MTSSQPAGWTAAELAQAAARGQLDLHYQPLVDLRDHRIAGAEALMRWRHPRLGLLPPGQFLPLAESFGLMPEIGAWVLGEACRQMHKWQG
293 PAWQPFRLAINVSASQVGPTFDDEVKRVLADMALPAELLEIELTESVAFGNPALFASFDALRAIGVRFAADDFGTGYSCLQHLKCCPITT
294 LKIDQSFVARLPDDARDQTIVRAVIQLAHGLGMDVIFRRRLHQLIGRNGCCAASS
295
296 </pre>
297 </td>
298 <tr></tr>
299 <td></td>
300 <tr></tr>
301 <td>
302 <p align="left">
303 <a href=http://pfam.xfam.org/family/PF00563> PF00563</a>
304 <p align="justify">DUF2; <br>Alignment kindly provided by SMART. This domain is found in diverse bacterial signaling proteins. It is called EAL after its conserved residues. The EAL domain is a good candidate for a diguanylate phosphodiesterase function . The domain contains many conserved acidic residues that could participate in metal binding and might form the phosphodiesterase active site .. </p>
305
306 </p>
307 </td>
308 <tr></tr>
309 <td></td>
310 <tr></tr>
311 <td>
312 <HR SIZE=3 WIDTH=80%>
313 <center><b>PROKKA_00009</b><br>
314 </center>
315 </td
316 <tr></tr>
317 <td bgcolor="#czb9dz">
318 <pre>
319 MATDTPRIPEQGVATLPDEAWERARRRAEIISPLAQSETVGHEAADMAAQALGLSRRQVYVLIRRARQGSGLVTDLVPGQSGGGKGKGRL
320 PEPVERVIHELLQKRFLTKQKRSLAAFHREVTQVCKAQKLRVPARNTVALRIASLDPRKVIRRREGQDAARDLQGVGGEPPAVTAPLEQV
321 QIDHTVIDLIVVDDRDRQPIGRPYLTLAIDVFTRCVLGMVVTLEAPSAVSVGLCLVHVACDKRPWLEGLNVEMDWQMSGKPLLLYLDNAA
322 EFKSEALRRGCEQHGIRLDYRPLGQPHYGGIVERIIGTAMQMIHDELPGTTFSNPDQRGDYDSENKAALTLRELERWLTLAVGTYHGSVH
323 NGLLQPPAARWAEAVARVGVPAVVTRATSFLVDFLPILRRTLTRTGFVIDHIHYYADGHCCK
324
325 </pre>
326 </td>
327 <tr></tr>
328 <td></td>
329 <tr></tr>
330 <td>
331 <p align="left">
332 <a href=http://pfam.xfam.org/family/PF13518> PF13518</a>
333 <p align="justify">Helix-turn-helix domain<br>This helix-turn-helix domain is often found in transposases and is likely to be DNA-binding.. </p>
334
335 </p>
336 </td>
337 <tr></tr>
338 <td></td>
339 <tr></tr>
340 <td bgcolor="#czb9dz">
341 <p align="left">
342 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
343 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
344
345 </p>
346 </td>
347 <tr></tr>
348 <td></td>
349 <tr></tr>
350 <td>
351 <p align="left">
352 <a href=http://pfam.xfam.org/family/PF00665> PF00665</a>
353 <p align="justify">Integrase core domain<br>Pfam-B_10 (release 2.1). Integrase mediates integration of a DNA copy of the viral genome into the host chromosome. Integrase is composed of three domains. The amino-terminal domain is a zinc binding domain Pfam:PF02022. This domain is the central catalytic domain. The carboxyl terminal domain that is a non-specific DNA binding domain Pfam:PF00552. The catalytic domain acts as an endonuclease when two nucleotides are removed from the 3' ends of the blunt-ended viral DNA made by reverse transcription. This domain also catalyses the DNA strand transfer reaction of the 3' ends of the viral DNA to the 5' ends of the integration site .. </p>
354
355 </p>
356 </td>
357 <tr></tr>
358 <td></td>
359 <tr></tr>
360 <td bgcolor="#czb9dz">
361 <p align="left">
362 <a href=http://pfam.xfam.org/clan/CL0219> CL0219</a>
363 <p align="justify">Ribonuclease H-like superfamily This clan includes a diverse set of nucleases that share a similar structure to Ribonuclease H. </p>
364
365 </p>
366 </td>
367 <tr></tr>
368 <td></td>
369 <tr></tr>
370 <td>
371 <HR SIZE=3 WIDTH=80%>
372 <center><b>PROKKA_00010</b><br>
373 </center>
374 </td
375 <tr></tr>
376 <td bgcolor="#czb9dz">
377 <pre>
378 MNPFKGRHFQRDIILWAVRWYCKYGISYRELQEMLAERGVNVDHSTIYRWVQRYAPEMEKRLRWYWRNPSDLCPWHMDETYVKVNGRWAY
379 LYRAVDSRGRTVDFYLSSRRNSKAAYRFLGKILNNVKKWQIPRFINTDKAPAYGRALALLKREGRCPSDVEHRQIKYRNNVIECDHGKLK
380 RIIGATLGFKSMKTAYATIKGIEVMRALRKGQASAFYYGDPLGEMRLVSRVFEM
381
382 </pre>
383 </td>
384 <tr></tr>
385 <td></td>
386 <tr></tr>
387 <td>
388 <p align="left">
389 <a href=http://pfam.xfam.org/family/PF13610> PF13610</a>
390 <p align="justify">DDE domain<br>This DDE domain is found in a wide variety of transposases including those found in IS240, IS26, IS6100 and IS26.. </p>
391
392 </p>
393 </td>
394 <tr></tr>
395 <td></td>
396 <tr></tr>
397 <td bgcolor="#czb9dz">
398 <p align="left">
399 <a href=http://pfam.xfam.org/clan/CL0219> CL0219</a>
400 <p align="justify">Ribonuclease H-like superfamily This clan includes a diverse set of nucleases that share a similar structure to Ribonuclease H. </p>
401
402 </p>
403 </td>
404 <tr></tr>
405 <td></td>
406 <tr></tr>
407 <td>
408 <HR SIZE=3 WIDTH=80%>
409 <center><b>PROKKA_00011</b><br>
410 </center>
411 </td
412 <tr></tr>
413 <td bgcolor="#czb9dz">
414 <pre>
415 MKLRHLDIFYAVMTCGSLTRAAEVLHISQPAASKALKHAEH
416
417 </pre>
418 </td>
419 <tr></tr>
420 <td></td>
421 <tr></tr>
422 <td>
423 <p align="left">
424 <a href=http://pfam.xfam.org/family/PF00126> PF00126</a>
425 <p align="justify">Bacterial regulatory helix-turn-helix protein, lysR family<br></p>
426
427 </p>
428 </td>
429 <tr></tr>
430 <td></td>
431 <tr></tr>
432 <td bgcolor="#czb9dz">
433 <p align="left">
434 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
435 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
436
437 </p>
438 </td>
439 <tr></tr>
440 <td></td>
441 <tr></tr>
442 <td>
443 <HR SIZE=3 WIDTH=80%>
444 <center><b>PROKKA_00013</b><br>
445 </center>
446 </td
447 <tr></tr>
448 <td bgcolor="#czb9dz">
449 <pre>
450 MILDASYTLLVACIALLIGMFVVKFTPFLQKNHIPEAVVGGFIVAIVLLIIDKTSGYSFTFDASLQSLLMLTFFSSIGLSSDFSRLIKGG
451 KPLVLLTIAVTILIAIQNTVGMSMAVMMNESPFIGLIAGSITLTGGHGNAGAWGPILADKYGVTGAVELAMACATLGLVLGGLVGGPVAR
452 HLLKKVSIPKTTEQERDTIVEAFEQPSVKRKINANNVIETISMLIICIVVGGYISALFKDTFLQLPTFVWCLFVGIIIRNTLTHVFKHEV
453 FEPTVDVLGSVALSLFLAMALMSLKFGQLASMAGPVLIIIAVQTVVMVLFACFVTFKMMGKDYDAVVISAGHCGFGMGATPTAIANMQTV
454 TKAFGPSHKAFLVVPMVGAFIVDISNSILIKIFIEIGTYFT
455
456 </pre>
457 </td>
458 <tr></tr>
459 <td></td>
460 <tr></tr>
461 <td>
462 <p align="left">
463 <a href=http://pfam.xfam.org/family/PF03616> PF03616</a>
464 <p align="justify">Sodium/glutamate symporter<br>TIGRFAMs, Griffiths-Jones SR. </p>
465
466 </p>
467 </td>
468 <tr></tr>
469 <td></td>
470 <tr></tr>
471 <td bgcolor="#czb9dz">
472 <p align="left">
473 <a href=http://pfam.xfam.org/clan/CL0064> CL0064</a>
474 <p align="justify">CPA/AT transporter superfamily This Clan contains transporter proteins that belong to the CPA superfamily and AT superfamily according to TCDB . </p>
475
476 </p>
477 </td>
478 <tr></tr>
479 <td></td>
480 <tr></tr>
481 <td>
482 <HR SIZE=3 WIDTH=80%>
483 <center><b>PROKKA_00014</b><br>
484 </center>
485 </td
486 <tr></tr>
487 <td bgcolor="#czb9dz">
488 <pre>
489 MIAVIFEVQIQPDQQTRYLTLAEELRPLLSHVAGFISIERFQSLATEGKMLSLSWWENEYAVLQWKNHVLHAKAQQEGRESIFDFYKISI
490 AHITREYSFKKDKDNV
491
492 </pre>
493 </td>
494 <tr></tr>
495 <td></td>
496 <tr></tr>
497 <td>
498 <p align="left">
499 <a href=http://pfam.xfam.org/family/PF03992> PF03992</a>
500 <p align="justify">Antibiotic biosynthesis monooxygenase<br>This domain is found in monooxygenases involved in the biosynthesis of several antibiotics by Streptomyces species. It's occurrence as a repeat in Streptomyces coelicolor SCO1909 (Swiss:Q9X9W3) is suggestive that the other proteins function as multimers. There is also a conserved histidine which is likely to be an active site residue.. </p>
501
502 </p>
503 </td>
504 <tr></tr>
505 <td></td>
506 <tr></tr>
507 <td bgcolor="#czb9dz">
508 <p align="left">
509 <a href=http://pfam.xfam.org/clan/CL0032> CL0032</a>
510 <p align="justify">Dimeric alpha/beta barrel superfamily This superfamily of proteins possess a Ferredoxin-like fold. Pairs of these assemble into a beta barrel. The function of this barrel is quite varied and includes Muconolactone isomerase as well as monooxygenases. </p>
511
512 </p>
513 </td>
514 <tr></tr>
515 <td></td>
516 <tr></tr>
517 <td>
518 <HR SIZE=3 WIDTH=80%>
519 <center><b>PROKKA_00015</b><br>
520 </center>
521 </td
522 <tr></tr>
523 <td bgcolor="#czb9dz">
524 <pre>
525 MFDVHVVLDNQIGQLALLGKTLGNKGIGLEGGGIFTVGDECHAHFLVEQGKEAKIALEQAGLLVLAIRTPLIRKLKQEKPGELGEIARVL
526 AENNINILVQYSDHANQLILITDNDSMAASVTLPWAIK
527
528 </pre>
529 </td>
530 <tr></tr>
531 <td></td>
532 <tr></tr>
533 <td>
534 <p align="left">
535 <a href=http://pfam.xfam.org/family/PF01842> PF01842</a>
536 <p align="justify">ACT domain<br>This family of domains generally have a regulatory role. ACT domains are linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Pairs of ACT domains bind specifically to a particular amino acid leading to regulation of the linked enzyme. The ACT domain is found in: D-3-phosphoglycerate dehydrogenase EC:1.1.1.95 Swiss:P08328, which is inhibited by serine . Aspartokinase EC:2.7.2.4 Swiss:P53553, which is regulated by lysine. Acetolactate synthase small regulatory subunit Swiss:P00894, which is inhibited by valine. Phenylalanine-4-hydroxylase EC:1.14.16.1 Swiss:P00439, which is regulated by phenylalanine. Prephenate dehydrogenase EC:4.2.1.51 Swiss:P21203. formyltetrahydrofolate deformylase EC:3.5.1.10, Swiss:P37051, which is activated by methionine and inhibited by glycine. GTP pyrophosphokinase EC:2.7.6.5 Swiss:P11585. </p>
537
538 </p>
539 </td>
540 <tr></tr>
541 <td></td>
542 <tr></tr>
543 <td bgcolor="#czb9dz">
544 <p align="left">
545 <a href=http://pfam.xfam.org/clan/CL0070> CL0070</a>
546 <p align="justify">These domains are involved in binding to amino-acids and causing allosteric regulation of linked enzyme domains . The relationship between these two families was first noticed in . </p>
547
548 </p>
549 </td>
550 <tr></tr>
551 <td></td>
552 <tr></tr>
553 <td>
554 <HR SIZE=3 WIDTH=80%>
555 <center><b>PROKKA_00016</b><br>
556 </center>
557 </td
558 <tr></tr>
559 <td bgcolor="#czb9dz">
560 <pre>
561 MSDISRVKILSALMDGRAWTATELSSVANISASTASSHLSKLLDCQLITVVAQGKHRYFRLAGKDIAELMESMMGISLNHGVHARVSTPV
562 HLRKARTCYDHLAGEVAVKIYDSLCQQQWITENGSMITLSGIQYFHEMGIDVPSKHSRKICCACLDWSERRFHLGGYVGAALFSLYESKG
563 WLTRHLGYREVTITEKGYAAFKTHFHI
564
565 </pre>
566 </td>
567 <tr></tr>
568 <td></td>
569 <tr></tr>
570 <td>
571 <p align="left">
572 <a href=http://pfam.xfam.org/family/PF12840> PF12840</a>
573 <p align="justify">Helix-turn-helix domain<br>This domain represents a DNA-binding Helix-turn-helix domain found in transcriptional regulatory proteins.. </p>
574
575 </p>
576 </td>
577 <tr></tr>
578 <td></td>
579 <tr></tr>
580 <td bgcolor="#czb9dz">
581 <p align="left">
582 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
583 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
584
585 </p>
586 </td>
587 <tr></tr>
588 <td></td>
589 <tr></tr>
590 <td>
591 <HR SIZE=3 WIDTH=80%>
592 <center><b>PROKKA_00017</b><br>
593 </center>
594 </td
595 <tr></tr>
596 <td bgcolor="#czb9dz">
597 <pre>
598 MSRLDKSKVINSALELLNEVGIEGLTTRKLAQKLGVEQPTLYWHVKNKRALLDALAIEMLDRHHTHFCPLEGESWQDFLRNNAKSFRCAL
599 LSHRDGAKVHLGTRPTEKQYETLENQLAFLCQQGFSLENALYALSAVGHFTLGCVLEDQEHQVAKEERETPTTDSMPPLLRQAIELFDHQ
600 GAEPAFLFGLELIICGLEKQLKCESGS
601
602 </pre>
603 </td>
604 <tr></tr>
605 <td></td>
606 <tr></tr>
607 <td>
608 <p align="left">
609 <a href=http://pfam.xfam.org/family/PF00440> PF00440</a>
610 <p align="justify">tetR; <br>Bacterial regulatory proteins, tetR family. </p>
611
612 </p>
613 </td>
614 <tr></tr>
615 <td></td>
616 <tr></tr>
617 <td bgcolor="#czb9dz">
618 <p align="left">
619 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
620 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
621
622 </p>
623 </td>
624 <tr></tr>
625 <td></td>
626 <tr></tr>
627 <td>
628 <p align="left">
629 <a href=http://pfam.xfam.org/family/PF02909> PF02909</a>
630 <p align="justify">tetR_C; <br>Tetracyclin repressor, C-terminal all-alpha domain. </p>
631
632 </p>
633 </td>
634 <tr></tr>
635 <td></td>
636 <tr></tr>
637 <td bgcolor="#czb9dz">
638 <p align="left">
639 <a href=http://pfam.xfam.org/clan/CL0174> CL0174</a>
640 <p align="justify">TetR protein, C-terminal domain-like This clan features families of transcriptional regulators for multidrug efflux pumps, which belong to the TetR superfamily. They are induced by the presence of a variety of factors, such as antibiotics or organic solvents. The C-terminal region featured in these families is thought to contain the inducer-binding site; the divergent sequences in this region allow for the binding of a variety of different inducers [1-4]. </p>
641
642 </p>
643 </td>
644 <tr></tr>
645 <td></td>
646 <tr></tr>