comparison pfam_annot/prova2 @ 0:68a3648c7d91 draft default tip

Uploaded
author matteoc
date Thu, 22 Dec 2016 04:45:31 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:68a3648c7d91
1 <html>
2 <head>
3 <style type="text/css">
4 span {
5 text-decoration:underline;
6 color:blue;
7 cursor:pointer;
8 }
9 </style>
10 <script src="script.js"></script>
11 <script>
12 show(elementID)
13 </script>
14 </head>
15 Proteins with PFAM domains:
16 <br><br>
17 <div>
18 <table cellpadding="0" width=650>
19 <td>
20 <HR SIZE=3 WIDTH=80%></HR>
21 <center><b>PROKKA_00001</b><br>
22 </center>
23 </td>
24 <tr></tr>
25 <td bgcolor="#czb9dz">
26 <pre>
27 MENNLENLTIGVFAKAAGVNVETIRFYQRKGLLREPDKPYGSIRRYGEADVVRVKFVKSAQRLGFSLDEIAELLRLDDGTHCEEASSLAE
28 HKLKDVREKMADLARMETVLSELVCACHARKGNVSCPLIASLQGEAGLARSAMP
29
30 </pre>
31 </td>
32 <tr></tr>
33 <td></td>
34 <tr></tr>
35 <td>
36 <p align="left">
37 <a href=http://pfam.xfam.org/family/PF00376> PF00376</a>
38 <p align="justify">merR; <br>MerR family regulatory protein Prosite & Pfam-B_3021 (Release 7.5) </p>
39
40 </p>
41 </td>
42 <tr></tr>
43 <td></td>
44 <tr></tr>
45 <td bgcolor="#czb9dz">
46 <p align="left">
47 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
48 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
49
50 </p>
51 </td>
52 <tr></tr>
53 <td></td>
54 <tr></tr>
55 <td>
56 <p align="left">
57 <a href=http://pfam.xfam.org/family/PF09278> PF09278</a>
58 <p align="justify">MerR, DNA binding<br>Members of this family of DNA-binding domains are predominantly found in the prokaryotic transcriptional regulator MerR. They adopt a structure consisting of a core of three alpha helices, with an architecture that is similar to that of the 'winged helix' fold . </p>
59
60 </p>
61 </td>
62 <tr></tr>
63 <td></td>
64 <tr></tr>
65 <td bgcolor="#czb9dz">
66 <p align="left">
67 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
68 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
69
70 </p>
71 </td>
72 <tr></tr>
73 <td></td>
74 <tr></tr>
75 <td>
76 <HR SIZE=3 WIDTH=80%></HR>
77 <center><b>PROKKA_00002</b><br>
78 </center>
79 </td>
80 <tr></tr>
81 <td bgcolor="#czb9dz">
82 <pre>
83 MSEPQNGRGALFAGGLAAILASTCCLGPLVLVALGFSGAWIGNLTVLEPYRPLFIGAALVALFFAWKRIYRPVQACKPGEVCAIPQVRAT
84 YKLIFWIVAVLVLVALGFPYVVPFFY
85
86 </pre>
87 </td>
88 <tr></tr>
89 <td></td>
90 <tr></tr>
91 <td>
92 <p align="left">
93 <a href=http://pfam.xfam.org/family/PF02411> PF02411</a>
94 <p align="justify">MerT mercuric transport protein<br>Pfam-B_1796 (release 5.4) MerT is an mercuric transport integral membrane protein and is responsible for transport of the Hg2+ iron from periplasmic MerP (also part of the transport system) to mercuric reductase (MerE). </p>
95
96 </p>
97 </td>
98 <tr></tr>
99 <td></td>
100 <tr></tr>
101 <td>
102 <HR SIZE=3 WIDTH=80%></HR>
103 <center><b>PROKKA_00003</b><br>
104 </center>
105 </td>
106 <tr></tr>
107 <td bgcolor="#czb9dz">
108 <pre>
109 MKKLFASLALAAAVAPVWAATQTVTLAVPGMTCAACPITVKKALSKVEGVSKVDVGFEKREAVVTFDDTKASVQKLTKATADAGYPSSVK
110 Q
111
112 </pre>
113 </td>
114 <tr></tr>
115 <td></td>
116 <tr></tr>
117 <td>
118 <p align="left">
119 <a href=http://pfam.xfam.org/family/PF00403> PF00403</a>
120 <p align="justify">Heavy-metal-associated domain<br></p>
121
122 </p>
123 </td>
124 <tr></tr>
125 <td></td>
126 <tr></tr>
127 <td>
128 <HR SIZE=3 WIDTH=80%></HR>
129 <center><b>PROKKA_00004</b><br>
130 </center>
131 </td>
132 <tr></tr>
133 <td bgcolor="#czb9dz">
134 <pre>
135 MGLMTRIADKTGALGSVVSAMGCAACFPALASFGAAIGLGFLSQYEGLFISRLLPLFAALAFLANALGWFSHRQWLRSLLGMIGPAIVFA
136 ATVWLLGNWWTANLMYVGLALMIGVSIWDFVSPAHRRCGPDGCELPAKRL
137
138 </pre>
139 </td>
140 <tr></tr>
141 <td></td>
142 <tr></tr>
143 <td>
144 <p align="left">
145 <a href=http://pfam.xfam.org/family/PF03203> PF03203</a>
146 <p align="justify">MerC mercury resistance protein<br>Pfam-B_2720 (release 6.5) </p>
147
148 </p>
149 </td>
150 <tr></tr>
151 <td></td>
152 <tr></tr>
153 <td>
154 <HR SIZE=3 WIDTH=80%></HR>
155 <center><b>PROKKA_00005</b><br>
156 </center>
157 </td>
158 <tr></tr>
159 <td bgcolor="#czb9dz">
160 <pre>
161 MSTLKITGMTCDSCAVHVKDALEKVPGVQSADVSYAKGSAKLAIEVGTSPDALTAAVAGLGYRATLADAPSVSTPGGLLDKMRDLLGRND
162 KTGSSGALHIAVIGSGGAAMAAALKAVEQGARVTLIERGTIGGTCVNVGCVPSKIMIRAAHIAHLRRESPFDGGIAATTPTIQRTALLAQ
163 QQARVDELRHAKYEGILEGNPAITVLHGSARFKDNRNLIVQLNDGGERVVAFDRCLIATGASPAVPPIPGLKDTPYWTSTEALVSETIPK
164 RLAVIGSSVVALELAQAFARLGAKVTILARSTLFFREDPAIGEAVTAAFRMEGIEVREHTQASQVAYINGEGDGEFVLTTAHGELRADKL
165 LVATGRAPNTRKLALDATGVTLTPQGAIVIDPGMRTSVEHIYAAGDCTDQPQFVYVAAAAGTRAAINMTGGDAALNLTAMPAVVFTDPQV
166 ATVGYSEAEAHHDGIKTDSRTLTLDNVPRALANFDTRGFIKLVVEEGSGRLIGVQAVAPEAGELIQTAALAIRNRMTVQELADQLFPYLT
167 MVEGLKLAAQTFNKDVKQLSCCAG
168
169 </pre>
170 </td>
171 <tr></tr>
172 <td></td>
173 <tr></tr>
174 <td>
175 <p align="left">
176 <a href=http://pfam.xfam.org/family/PF00403> PF00403</a>
177 <p align="justify">Heavy-metal-associated domain<br></p>
178
179 </p>
180 </td>
181 <tr></tr>
182 <td></td>
183 <tr></tr>
184 <td bgcolor="#czb9dz">
185 <p align="left">
186 <a href=http://pfam.xfam.org/family/PF07992> PF07992</a>
187 <p align="justify">Pyridine nucleotide-disulphide oxidoreductase<br>This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. This domain is actually a small NADH binding domain within a larger FAD binding domain. </p>
188
189 </p>
190 </td>
191 <tr></tr>
192 <td></td>
193 <tr></tr>
194 <td>
195 <p align="left">
196 <a href=http://pfam.xfam.org/clan/CL0063> CL0063</a>
197 <p align="justify">FAD/NAD(P)-binding Rossmann fold Superfamily A class of redox enzymes are two domain proteins. One domain, termed the catalytic domain, confers substrate specificity and the precise reaction of the enzyme. The other domain, which is common to this class of redox enzymes, is a Rossmann-fold domain. The Rossmann domain binds nicotinamide adenine dinucleotide (NAD+) and it is this cofactor that reversibly accepts a hydride ion, which is lost or gained by the substrate in the redox reaction. Rossmann domains have an alpha/beta fold, which has a central beta sheet, with approximately five alpha helices found surrounding the beta sheet.The strands forming the beta sheet are found in the following characteristic order 654123. The inter sheet crossover of the stands in the sheet form the NAD+ binding site . In some more distantly relate Rossmann domains the NAD+ cofactor is replaced by the functionally similar cofactor FAD. </p>
198
199 </p>
200 </td>
201 <tr></tr>
202 <td></td>
203 <tr></tr>
204 <td bgcolor="#czb9dz">
205 <p align="left">
206 <a href=http://pfam.xfam.org/family/PF00070> PF00070</a>
207 <p align="justify">pyr_redox; <br>Pyridine nucleotide-disulphide oxidoreductase This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. This domain is actually a small NADH binding domain within a larger FAD binding domain. </p>
208
209 </p>
210 </td>
211 <tr></tr>
212 <td></td>
213 <tr></tr>
214 <td>
215 <p align="left">
216 <a href=http://pfam.xfam.org/clan/CL0063> CL0063</a>
217 <p align="justify">FAD/NAD(P)-binding Rossmann fold Superfamily A class of redox enzymes are two domain proteins. One domain, termed the catalytic domain, confers substrate specificity and the precise reaction of the enzyme. The other domain, which is common to this class of redox enzymes, is a Rossmann-fold domain. The Rossmann domain binds nicotinamide adenine dinucleotide (NAD+) and it is this cofactor that reversibly accepts a hydride ion, which is lost or gained by the substrate in the redox reaction. Rossmann domains have an alpha/beta fold, which has a central beta sheet, with approximately five alpha helices found surrounding the beta sheet.The strands forming the beta sheet are found in the following characteristic order 654123. The inter sheet crossover of the stands in the sheet form the NAD+ binding site . In some more distantly relate Rossmann domains the NAD+ cofactor is replaced by the functionally similar cofactor FAD. </p>
218
219 </p>
220 </td>
221 <tr></tr>
222 <td></td>
223 <tr></tr>
224 <td bgcolor="#czb9dz">
225 <p align="left">
226 <a href=http://pfam.xfam.org/family/PF02852> PF02852</a>
227 <p align="justify">pyr_redox_dim; <br>Pyridine nucleotide-disulphide oxidoreductase, dimerisation domain This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. </p>
228
229 </p>
230 </td>
231 <tr></tr>
232 <td></td>
233 <tr></tr>
234 <td>
235 <HR SIZE=3 WIDTH=80%></HR>
236 <center><b>PROKKA_00006</b><br>
237 </center>
238 </td>
239 <tr></tr>
240 <td bgcolor="#czb9dz">
241 <pre>
242 MSAYTVSQLAHNAGVSVHIVRDYLVRGLLRPVACTTGGYGVFDDAALQRLCFVRAAFEAGIGLDALARLCRALDAADGAQAAAQLAVLRQ
243 LVERRRAALAHLDAQLASMPAERAHEEALP
244
245 </pre>
246 </td>
247 <tr></tr>
248 <td></td>
249 <tr></tr>
250 <td>
251 <p align="left">
252 <a href=http://pfam.xfam.org/family/PF13411> PF13411</a>
253 <p align="justify">MerR HTH family regulatory protein<br></p>
254
255 </p>
256 </td>
257 <tr></tr>
258 <td></td>
259 <tr></tr>
260 <td bgcolor="#czb9dz">
261 <p align="left">
262 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
263 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
264
265 </p>
266 </td>
267 <tr></tr>
268 <td></td>
269 <tr></tr>
270 <td>
271 <HR SIZE=3 WIDTH=80%></HR>
272 <center><b>PROKKA_00007</b><br>
273 </center>
274 </td>
275 <tr></tr>
276 <td bgcolor="#czb9dz">
277 <pre>
278 VNAPDKLPPETRQPVSGYLWGALAVLTCPCHLPILAAVLAGTTAGAFLGEHWGVAALALTGLFVLAVTRLLRAFRGGS
279
280 </pre>
281 </td>
282 <tr></tr>
283 <td></td>
284 <tr></tr>
285 <td>
286 <p align="left">
287 <a href=http://pfam.xfam.org/family/PF05052> PF05052</a>
288 <p align="justify">MerE protein<br>Pfam-B_5840 (release 7.7) The prokaryotic MerE (or URF-1) protein is part of the mercury resistance operon. The protein is thought not to have any direct role in conferring mercury resistance to the organism but may be a mercury resistance transposon [1,2]. </p>
289
290 </p>
291 </td>
292 <tr></tr>
293 <td></td>
294 <tr></tr>
295 <td>
296 <HR SIZE=3 WIDTH=80%></HR>
297 <center><b>PROKKA_00008</b><br>
298 </center>
299 </td>
300 <tr></tr>
301 <td bgcolor="#czb9dz">
302 <pre>
303 MTSSQPAGWTAAELAQAAARGQLDLHYQPLVDLRDHRIAGAEALMRWRHPRLGLLPPGQFLPLAESFGLMPEIGAWVLGEACRQMHKWQG
304 PAWQPFRLAINVSASQVGPTFDDEVKRVLADMALPAELLEIELTESVAFGNPALFASFDALRAIGVRFAADDFGTGYSCLQHLKCCPITT
305 LKIDQSFVARLPDDARDQTIVRAVIQLAHGLGMDVIFRRRLHQLIGRNGCCAASS
306
307 </pre>
308 </td>
309 <tr></tr>
310 <td></td>
311 <tr></tr>
312 <td>
313 <p align="left">
314 <a href=http://pfam.xfam.org/family/PF00563> PF00563</a>
315 <p align="justify">DUF2; <br>Alignment kindly provided by SMART This domain is found in diverse bacterial signaling proteins. It is called EAL after its conserved residues. The EAL domain is a good candidate for a diguanylate phosphodiesterase function . The domain contains many conserved acidic residues that could participate in metal binding and might form the phosphodiesterase active site . </p>
316
317 </p>
318 </td>
319 <tr></tr>
320 <td></td>
321 <tr></tr>
322 <td>
323 <HR SIZE=3 WIDTH=80%></HR>
324 <center><b>PROKKA_00009</b><br>
325 </center>
326 </td>
327 <tr></tr>
328 <td bgcolor="#czb9dz">
329 <pre>
330 MATDTPRIPEQGVATLPDEAWERARRRAEIISPLAQSETVGHEAADMAAQALGLSRRQVYVLIRRARQGSGLVTDLVPGQSGGGKGKGRL
331 PEPVERVIHELLQKRFLTKQKRSLAAFHREVTQVCKAQKLRVPARNTVALRIASLDPRKVIRRREGQDAARDLQGVGGEPPAVTAPLEQV
332 QIDHTVIDLIVVDDRDRQPIGRPYLTLAIDVFTRCVLGMVVTLEAPSAVSVGLCLVHVACDKRPWLEGLNVEMDWQMSGKPLLLYLDNAA
333 EFKSEALRRGCEQHGIRLDYRPLGQPHYGGIVERIIGTAMQMIHDELPGTTFSNPDQRGDYDSENKAALTLRELERWLTLAVGTYHGSVH
334 NGLLQPPAARWAEAVARVGVPAVVTRATSFLVDFLPILRRTLTRTGFVIDHIHYYADGHCCK
335
336 </pre>
337 </td>
338 <tr></tr>
339 <td></td>
340 <tr></tr>
341 <td>
342 <p align="left">
343 <a href=http://pfam.xfam.org/family/PF13518> PF13518</a>
344 <p align="justify">Helix-turn-helix domain<br>This helix-turn-helix domain is often found in transposases and is likely to be DNA-binding. </p>
345
346 </p>
347 </td>
348 <tr></tr>
349 <td></td>
350 <tr></tr>
351 <td bgcolor="#czb9dz">
352 <p align="left">
353 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
354 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
355
356 </p>
357 </td>
358 <tr></tr>
359 <td></td>
360 <tr></tr>
361 <td>
362 <p align="left">
363 <a href=http://pfam.xfam.org/family/PF00665> PF00665</a>
364 <p align="justify">Integrase core domain<br>Pfam-B_10 (release 2.1) Integrase mediates integration of a DNA copy of the viral genome into the host chromosome. Integrase is composed of three domains. The amino-terminal domain is a zinc binding domain Pfam:PF02022. This domain is the central catalytic domain. The carboxyl terminal domain that is a non-specific DNA binding domain Pfam:PF00552. The catalytic domain acts as an endonuclease when two nucleotides are removed from the 3' ends of the blunt-ended viral DNA made by reverse transcription. This domain also catalyses the DNA strand transfer reaction of the 3' ends of the viral DNA to the 5' ends of the integration site . </p>
365
366 </p>
367 </td>
368 <tr></tr>
369 <td></td>
370 <tr></tr>
371 <td bgcolor="#czb9dz">
372 <p align="left">
373 <a href=http://pfam.xfam.org/clan/CL0219> CL0219</a>
374 <p align="justify">Ribonuclease H-like superfamily This clan includes a diverse set of nucleases that share a similar structure to Ribonuclease H. </p>
375
376 </p>
377 </td>
378 <tr></tr>
379 <td></td>
380 <tr></tr>
381 <td>
382 <HR SIZE=3 WIDTH=80%></HR>
383 <center><b>PROKKA_00010</b><br>
384 </center>
385 </td>
386 <tr></tr>
387 <td bgcolor="#czb9dz">
388 <pre>
389 MNPFKGRHFQRDIILWAVRWYCKYGISYRELQEMLAERGVNVDHSTIYRWVQRYAPEMEKRLRWYWRNPSDLCPWHMDETYVKVNGRWAY
390 LYRAVDSRGRTVDFYLSSRRNSKAAYRFLGKILNNVKKWQIPRFINTDKAPAYGRALALLKREGRCPSDVEHRQIKYRNNVIECDHGKLK
391 RIIGATLGFKSMKTAYATIKGIEVMRALRKGQASAFYYGDPLGEMRLVSRVFEM
392
393 </pre>
394 </td>
395 <tr></tr>
396 <td></td>
397 <tr></tr>
398 <td>
399 <p align="left">
400 <a href=http://pfam.xfam.org/family/PF13610> PF13610</a>
401 <p align="justify">DDE domain<br>This DDE domain is found in a wide variety of transposases including those found in IS240, IS26, IS6100 and IS26. </p>
402
403 </p>
404 </td>
405 <tr></tr>
406 <td></td>
407 <tr></tr>
408 <td bgcolor="#czb9dz">
409 <p align="left">
410 <a href=http://pfam.xfam.org/clan/CL0219> CL0219</a>
411 <p align="justify">Ribonuclease H-like superfamily This clan includes a diverse set of nucleases that share a similar structure to Ribonuclease H. </p>
412
413 </p>
414 </td>
415 <tr></tr>
416 <td></td>
417 <tr></tr>
418 <td>
419 <HR SIZE=3 WIDTH=80%></HR>
420 <center><b>PROKKA_00011</b><br>
421 </center>
422 </td>
423 <tr></tr>
424 <td bgcolor="#czb9dz">
425 <pre>
426 MKLRHLDIFYAVMTCGSLTRAAEVLHISQPAASKALKHAEH
427
428 </pre>
429 </td>
430 <tr></tr>
431 <td></td>
432 <tr></tr>
433 <td>
434 <p align="left">
435 <a href=http://pfam.xfam.org/family/PF00126> PF00126</a>
436 <p align="justify">Bacterial regulatory helix-turn-helix protein, lysR family<br></p>
437
438 </p>
439 </td>
440 <tr></tr>
441 <td></td>
442 <tr></tr>
443 <td bgcolor="#czb9dz">
444 <p align="left">
445 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
446 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
447
448 </p>
449 </td>
450 <tr></tr>
451 <td></td>
452 <tr></tr>
453 <td>
454 <HR SIZE=3 WIDTH=80%></HR>
455 <center><b>PROKKA_00013</b><br>
456 </center>
457 </td>
458 <tr></tr>
459 <td bgcolor="#czb9dz">
460 <pre>
461 MILDASYTLLVACIALLIGMFVVKFTPFLQKNHIPEAVVGGFIVAIVLLIIDKTSGYSFTFDASLQSLLMLTFFSSIGLSSDFSRLIKGG
462 KPLVLLTIAVTILIAIQNTVGMSMAVMMNESPFIGLIAGSITLTGGHGNAGAWGPILADKYGVTGAVELAMACATLGLVLGGLVGGPVAR
463 HLLKKVSIPKTTEQERDTIVEAFEQPSVKRKINANNVIETISMLIICIVVGGYISALFKDTFLQLPTFVWCLFVGIIIRNTLTHVFKHEV
464 FEPTVDVLGSVALSLFLAMALMSLKFGQLASMAGPVLIIIAVQTVVMVLFACFVTFKMMGKDYDAVVISAGHCGFGMGATPTAIANMQTV
465 TKAFGPSHKAFLVVPMVGAFIVDISNSILIKIFIEIGTYFT
466
467 </pre>
468 </td>
469 <tr></tr>
470 <td></td>
471 <tr></tr>
472 <td>
473 <p align="left">
474 <a href=http://pfam.xfam.org/family/PF03616> PF03616</a>
475 <p align="justify">Sodium/glutamate symporter<br>TIGRFAMs, Griffiths-Jones SR </p>
476
477 </p>
478 </td>
479 <tr></tr>
480 <td></td>
481 <tr></tr>
482 <td bgcolor="#czb9dz">
483 <p align="left">
484 <a href=http://pfam.xfam.org/clan/CL0064> CL0064</a>
485 <p align="justify">CPA/AT transporter superfamily This Clan contains transporter proteins that belong to the CPA superfamily and AT superfamily according to TCDB . </p>
486
487 </p>
488 </td>
489 <tr></tr>
490 <td></td>
491 <tr></tr>
492 <td>
493 <HR SIZE=3 WIDTH=80%></HR>
494 <center><b>PROKKA_00014</b><br>
495 </center>
496 </td>
497 <tr></tr>
498 <td bgcolor="#czb9dz">
499 <pre>
500 MIAVIFEVQIQPDQQTRYLTLAEELRPLLSHVAGFISIERFQSLATEGKMLSLSWWENEYAVLQWKNHVLHAKAQQEGRESIFDFYKISI
501 AHITREYSFKKDKDNV
502
503 </pre>
504 </td>
505 <tr></tr>
506 <td></td>
507 <tr></tr>
508 <td>
509 <p align="left">
510 <a href=http://pfam.xfam.org/family/PF03992> PF03992</a>
511 <p align="justify">Antibiotic biosynthesis monooxygenase<br>This domain is found in monooxygenases involved in the biosynthesis of several antibiotics by Streptomyces species. It's occurrence as a repeat in Streptomyces coelicolor SCO1909 (Swiss:Q9X9W3) is suggestive that the other proteins function as multimers. There is also a conserved histidine which is likely to be an active site residue. </p>
512
513 </p>
514 </td>
515 <tr></tr>
516 <td></td>
517 <tr></tr>
518 <td bgcolor="#czb9dz">
519 <p align="left">
520 <a href=http://pfam.xfam.org/clan/CL0032> CL0032</a>
521 <p align="justify">Dimeric alpha/beta barrel superfamily This superfamily of proteins possess a Ferredoxin-like fold. Pairs of these assemble into a beta barrel. The function of this barrel is quite varied and includes Muconolactone isomerase as well as monooxygenases. </p>
522
523 </p>
524 </td>
525 <tr></tr>
526 <td></td>
527 <tr></tr>
528 <td>
529 <HR SIZE=3 WIDTH=80%></HR>
530 <center><b>PROKKA_00015</b><br>
531 </center>
532 </td>
533 <tr></tr>
534 <td bgcolor="#czb9dz">
535 <pre>
536 MFDVHVVLDNQIGQLALLGKTLGNKGIGLEGGGIFTVGDECHAHFLVEQGKEAKIALEQAGLLVLAIRTPLIRKLKQEKPGELGEIARVL
537 AENNINILVQYSDHANQLILITDNDSMAASVTLPWAIK
538
539 </pre>
540 </td>
541 <tr></tr>
542 <td></td>
543 <tr></tr>
544 <td>
545 <p align="left">
546 <a href=http://pfam.xfam.org/family/PF01842> PF01842</a>
547 <p align="justify">ACT domain<br>This family of domains generally have a regulatory role. ACT domains are linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Pairs of ACT domains bind specifically to a particular amino acid leading to regulation of the linked enzyme. The ACT domain is found in: D-3-phosphoglycerate dehydrogenase EC:1.1.1.95 Swiss:P08328, which is inhibited by serine . Aspartokinase EC:2.7.2.4 Swiss:P53553, which is regulated by lysine. Acetolactate synthase small regulatory subunit Swiss:P00894, which is inhibited by valine. Phenylalanine-4-hydroxylase EC:1.14.16.1 Swiss:P00439, which is regulated by phenylalanine. Prephenate dehydrogenase EC:4.2.1.51 Swiss:P21203. formyltetrahydrofolate deformylase EC:3.5.1.10, Swiss:P37051, which is activated by methionine and inhibited by glycine. GTP pyrophosphokinase EC:2.7.6.5 Swiss:P11585 </p>
548
549 </p>
550 </td>
551 <tr></tr>
552 <td></td>
553 <tr></tr>
554 <td bgcolor="#czb9dz">
555 <p align="left">
556 <a href=http://pfam.xfam.org/clan/CL0070> CL0070</a>
557 <p align="justify">These domains are involved in binding to amino-acids and causing allosteric regulation of linked enzyme domains . The relationship between these two families was first noticed in . </p>
558
559 </p>
560 </td>
561 <tr></tr>
562 <td></td>
563 <tr></tr>
564 <td>
565 <HR SIZE=3 WIDTH=80%></HR>
566 <center><b>PROKKA_00016</b><br>
567 </center>
568 </td>
569 <tr></tr>
570 <td bgcolor="#czb9dz">
571 <pre>
572 MSDISRVKILSALMDGRAWTATELSSVANISASTASSHLSKLLDCQLITVVAQGKHRYFRLAGKDIAELMESMMGISLNHGVHARVSTPV
573 HLRKARTCYDHLAGEVAVKIYDSLCQQQWITENGSMITLSGIQYFHEMGIDVPSKHSRKICCACLDWSERRFHLGGYVGAALFSLYESKG
574 WLTRHLGYREVTITEKGYAAFKTHFHI
575
576 </pre>
577 </td>
578 <tr></tr>
579 <td></td>
580 <tr></tr>
581 <td>
582 <p align="left">
583 <a href=http://pfam.xfam.org/family/PF12840> PF12840</a>
584 <p align="justify">Helix-turn-helix domain<br>This domain represents a DNA-binding Helix-turn-helix domain found in transcriptional regulatory proteins. </p>
585
586 </p>
587 </td>
588 <tr></tr>
589 <td></td>
590 <tr></tr>
591 <td bgcolor="#czb9dz">
592 <p align="left">
593 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
594 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
595
596 </p>
597 </td>
598 <tr></tr>
599 <td></td>
600 <tr></tr>
601 <td>
602 <HR SIZE=3 WIDTH=80%></HR>
603 <center><b>PROKKA_00017</b><br>
604 </center>
605 </td>
606 <tr></tr>
607 <td bgcolor="#czb9dz">
608 <pre>
609 MSRLDKSKVINSALELLNEVGIEGLTTRKLAQKLGVEQPTLYWHVKNKRALLDALAIEMLDRHHTHFCPLEGESWQDFLRNNAKSFRCAL
610 LSHRDGAKVHLGTRPTEKQYETLENQLAFLCQQGFSLENALYALSAVGHFTLGCVLEDQEHQVAKEERETPTTDSMPPLLRQAIELFDHQ
611 GAEPAFLFGLELIICGLEKQLKCESGS
612
613 </pre>
614 </td>
615 <tr></tr>
616 <td></td>
617 <tr></tr>
618 <td>
619 <p align="left">
620 <a href=http://pfam.xfam.org/family/PF00440> PF00440</a>
621 <p align="justify">tetR; <br>Bacterial regulatory proteins, tetR family </p>
622
623 </p>
624 </td>
625 <tr></tr>
626 <td></td>
627 <tr></tr>
628 <td bgcolor="#czb9dz">
629 <p align="left">
630 <a href=http://pfam.xfam.org/clan/CL0123> CL0123</a>
631 <p align="justify">This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif. </p>
632
633 </p>
634 </td>
635 <tr></tr>
636 <td></td>
637 <tr></tr>
638 <td>
639 <p align="left">
640 <a href=http://pfam.xfam.org/family/PF02909> PF02909</a>
641 <p align="justify">tetR_C; <br>Tetracyclin repressor, C-terminal all-alpha domain </p>
642
643 </p>
644 </td>
645 <tr></tr>
646 <td></td>
647 <tr></tr>
648 <td bgcolor="#czb9dz">
649 <p align="left">
650 <a href=http://pfam.xfam.org/clan/CL0174> CL0174</a>
651 <p align="justify">TetR protein, C-terminal domain-like This clan features families of transcriptional regulators for multidrug efflux pumps, which belong to the TetR superfamily. They are induced by the presence of a variety of factors, such as antibiotics or organic solvents. The C-terminal region featured in these families is thought to contain the inducer-binding site; the divergent sequences in this region allow for the binding of a variety of different inducers [1-4]. </p>
652
653 </p>
654 </td>
655 <tr></tr>
656 <td></td>
657 <tr></tr>
658 </table>
659 </div>
660 </body>