Mercurial > repos > mb2013 > nepenthes_3dpca
view PCA_plot.R @ 9:2e8c9032e8d8 draft
Uploaded
author | mb2013 |
---|---|
date | Tue, 20 May 2014 03:27:01 -0400 |
parents | |
children |
line wrap: on
line source
#Plottool makes a graph of Principal Components created with a Principal Component analysis. #MB #commands extracting of commandline args <- commandArgs(TRUE) #input files and options input <- args[1] main_title <- args[2] x_title <- args[3] y_title <- args[4] x_column <- args[5] y_column <- args[6] names <- args [7] #name of every sample in one file #output file output <- args[8] suppressMessages(library("geomorph")) #package geomorph #reading of input files read <- read.csv(file <- input,header = TRUE) read2 <- scan(file <- names, what = "", quiet = TRUE) pca1 <- read[,as.integer(x_column)] #principal component pca2 <- read[,as.integer(y_column)] #principal component png(output) #output in png format #axis boundaries minpca1 = min(pca1) - max(pca1) maxpca1 = max(pca1) + max(pca1) minpca2 = min(pca2) - max(pca2) maxpca2 = max(pca2) + max(pca2) #creating the plot with principal components and titels suppressMessages(plot(pca1,pca2, main = main_title, xlab = x_title, ylab = y_title, pch=20,cex=0.6, xlim = c(minpca1,maxpca1), ylim=c(minpca2,maxpca2))) #add labels to data points text(pca1,pca2,labels = read2, pos = 2, cex = 0.7,col = heat.colors(35:40)) graphics.off()