Mercurial > repos > melpetera > batchcorrection
comparison batchcorrection/batch_correction_all_loess_script.R @ 2:016780b192a6 draft
Uploaded
| author | melpetera |
|---|---|
| date | Thu, 02 Mar 2017 03:38:08 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:f64656ae9ea4 | 2:016780b192a6 |
|---|---|
| 1 loessF <- function(datVn, qcaVi, preVi, spnN) { | |
| 2 | |
| 3 if(length(qcaVi) < 5) { | |
| 4 | |
| 5 return(predict(lm(datVn[qcaVi] ~ qcaVi), | |
| 6 newdata = data.frame(qcaVi = preVi))) | |
| 7 | |
| 8 } else { | |
| 9 | |
| 10 return(predict(loess(datVn[qcaVi] ~ qcaVi, | |
| 11 control = loess.control(surface = "direct"), | |
| 12 span = spnN), | |
| 13 newdata = data.frame(qcaVi = preVi))) | |
| 14 | |
| 15 } | |
| 16 | |
| 17 ## Note: | |
| 18 ## the surface = 'direct' argument allows extrapolation | |
| 19 | |
| 20 } ## loessF | |
| 21 | |
| 22 plotBatchF <- function(datMN, samDF.arg, spnN.arg) { | |
| 23 | |
| 24 maiC <- switch(gsub("MN", "", deparse(substitute(datMN))), | |
| 25 raw = "Raw", | |
| 26 nrm = "Normalized") | |
| 27 | |
| 28 colVc <- c(sample = "green4", | |
| 29 pool = "red", | |
| 30 blank = "black", | |
| 31 other = "yellow") | |
| 32 | |
| 33 par(font = 2, font.axis = 2, font.lab = 2, lwd = 2, pch = 18) | |
| 34 | |
| 35 layout(matrix(c(1, 1, 2, 3), nrow = 2), | |
| 36 widths = c(0.7, 0.3)) | |
| 37 | |
| 38 obsNamVc <- rownames(datMN) | |
| 39 | |
| 40 obsColVc <- sapply(samDF.arg[, "sampleType"], | |
| 41 function(typC) | |
| 42 ifelse(typC %in% names(colVc), colVc[typC], colVc["other"])) | |
| 43 | |
| 44 ## Graphic 1: Sum of intensities for each sample | |
| 45 | |
| 46 par(mar = c(3.6, 3.6, 3.1, 0.6)) | |
| 47 | |
| 48 batTab <- table(samDF.arg[, "batch"]) | |
| 49 | |
| 50 sumVn <- rowSums(datMN, na.rm = TRUE) | |
| 51 | |
| 52 plot(sumVn, | |
| 53 cex = 1.2, | |
| 54 col = obsColVc, | |
| 55 pch = 18, | |
| 56 xaxs = "i", | |
| 57 xlab = "", | |
| 58 ylab = "") | |
| 59 | |
| 60 mtext("Injection order", | |
| 61 line = 2.2, | |
| 62 side = 1) | |
| 63 mtext("Sum of variable intensities", | |
| 64 line = 2.2, | |
| 65 side = 2) | |
| 66 | |
| 67 mtext(maiC, cex = 1.2, line = 1.5, side = 3) | |
| 68 | |
| 69 abline(v = cumsum(batTab) + 0.5, | |
| 70 col = "red") | |
| 71 | |
| 72 mtext(names(batTab), | |
| 73 at = batTab / 2 + c(0, cumsum(batTab[-length(batTab)]))) | |
| 74 | |
| 75 obsColVuc <- obsColVc[sort(unique(names(obsColVc)))] | |
| 76 | |
| 77 text(rep(batTab[1], times = length(obsColVuc)), | |
| 78 par("usr")[3] + (0.97 - length(obsColVuc) * 0.03 + 1:length(obsColVuc) * 0.03) * diff(par("usr")[3:4]), | |
| 79 col = obsColVuc, | |
| 80 font = 2, | |
| 81 labels = names(obsColVuc), | |
| 82 pos = 2) | |
| 83 | |
| 84 for(batC in names(batTab)) { | |
| 85 | |
| 86 batSeqVi <- which(samDF.arg[, "batch"] == batC) | |
| 87 batPooVi <- intersect(batSeqVi, | |
| 88 grep("pool", samDF.arg[, "sampleType"])) | |
| 89 batSamVi <- intersect(batSeqVi, | |
| 90 grep("sample", samDF.arg[, "sampleType"])) | |
| 91 if(length(batPooVi)) | |
| 92 lines(batSeqVi, | |
| 93 loessF(sumVn, batPooVi, batSeqVi, spnN=spnN.arg), | |
| 94 col = colVc["pool"]) | |
| 95 lines(batSeqVi, | |
| 96 loessF(sumVn, batSamVi, batSeqVi, spnN=spnN.arg), | |
| 97 col = colVc["sample"]) | |
| 98 | |
| 99 } | |
| 100 | |
| 101 ## Graphics 2 and 3 (right): PCA score plots of components 1-4 | |
| 102 | |
| 103 radVn <- seq(0, 2 * pi, length.out = 100) | |
| 104 epsN <- .Machine[["double.eps"]] ## [1] 2.22e-16 | |
| 105 | |
| 106 pcaMN <- datMN | |
| 107 | |
| 108 if(any(is.na(pcaMN))) { | |
| 109 minN <- min(pcaMN, na.rm = TRUE) | |
| 110 pcaMN[is.na(pcaMN)] <- minN | |
| 111 } | |
| 112 | |
| 113 pcaLs <- opls(pcaMN, predI = 4, algoC = "svd", printL = FALSE, plotL = FALSE) | |
| 114 tMN <- getScoreMN(pcaLs) | |
| 115 vRelVn <- pcaLs@modelDF[, "R2X"] | |
| 116 | |
| 117 n <- nrow(tMN) | |
| 118 hotN <- 2 * (n - 1) * (n^2 - 1) / (n^2 * (n - 2)) | |
| 119 | |
| 120 hotFisN <- hotN * qf(0.95, 2, n - 2) | |
| 121 | |
| 122 pcsLs <- list(c(1, 2), c(3, 4)) | |
| 123 | |
| 124 par(mar = c(3.6, 3.6, 0.6, 1.1)) | |
| 125 | |
| 126 for(pcsN in 1:length(pcsLs)) { | |
| 127 | |
| 128 pcsVn <- pcsLs[[pcsN]] | |
| 129 | |
| 130 tcsMN <- tMN[, pcsVn] | |
| 131 | |
| 132 micMN <- solve(cov(tcsMN)) | |
| 133 | |
| 134 n <- nrow(tMN) | |
| 135 hotN <- 2 * (n - 1) * (n^2 - 1) / (n^2 * (n - 2)) | |
| 136 | |
| 137 hotFisN <- hotN * qf(0.95, 2, n - 2) | |
| 138 | |
| 139 hotVn <- apply(tcsMN, | |
| 140 1, | |
| 141 function(x) 1 - pf(1 / hotN * t(as.matrix(x)) %*% micMN %*% as.matrix(x), 2, n - 2)) | |
| 142 | |
| 143 obsHotVi <- which(hotVn < 0.05) | |
| 144 | |
| 145 xLabC <- paste("t", | |
| 146 pcsVn[1], | |
| 147 "(", | |
| 148 round(vRelVn[pcsVn[1]] * 100), | |
| 149 "%)", | |
| 150 sep = "") | |
| 151 | |
| 152 yLabC <- paste("t", | |
| 153 pcsVn[2], | |
| 154 "(", | |
| 155 round(vRelVn[pcsVn[2]] * 100), | |
| 156 "%)", | |
| 157 sep = "") | |
| 158 | |
| 159 xLimVn <- c(-1, 1) * max(sqrt(var(tcsMN[, 1]) * hotFisN), max(abs(tcsMN[, 1]))) | |
| 160 yLimVn <- c(-1, 1) * max(sqrt(var(tcsMN[, 2]) * hotFisN), max(abs(tcsMN[, 2]))) | |
| 161 | |
| 162 plot(tcsMN, | |
| 163 main = "", | |
| 164 type = "n", | |
| 165 xlab = "", | |
| 166 ylab = "", | |
| 167 xlim = xLimVn, | |
| 168 ylim = yLimVn) | |
| 169 | |
| 170 mtext(xLabC, | |
| 171 line = 2.2, | |
| 172 side = 1) | |
| 173 mtext(yLabC, | |
| 174 line = 2.2, | |
| 175 side = 2) | |
| 176 | |
| 177 par(lwd = 1) | |
| 178 | |
| 179 abline(v = axTicks(1), | |
| 180 col = "grey") | |
| 181 | |
| 182 abline(h = axTicks(2), | |
| 183 col = "grey") | |
| 184 | |
| 185 abline(v = 0) | |
| 186 abline(h = 0) | |
| 187 | |
| 188 lines(sqrt(var(tcsMN[, 1]) * hotFisN) * cos(radVn), | |
| 189 sqrt(var(tcsMN[, 2]) * hotFisN) * sin(radVn)) | |
| 190 | |
| 191 points(tcsMN, | |
| 192 col = obsColVc, | |
| 193 pch = 18) | |
| 194 | |
| 195 if(length(obsHotVi)) | |
| 196 text(tcsMN[obsHotVi, 1], | |
| 197 tcsMN[obsHotVi, 2], | |
| 198 col = obsColVc[obsHotVi], | |
| 199 labels = obsNamVc[obsHotVi], | |
| 200 pos = 3) | |
| 201 | |
| 202 } ## for(pcsN in 1:length(pcsLs)) { | |
| 203 | |
| 204 return(invisible(list(sumVn = sumVn, | |
| 205 tcsMN = tcsMN))) | |
| 206 | |
| 207 } ## plotBatchF | |
| 208 | |
| 209 shiftBatchCorrectF <- function(rawMN.arg, | |
| 210 samDF.arg, | |
| 211 refC.arg, | |
| 212 spnN.arg) { | |
| 213 | |
| 214 cat("\nReference observations are: ", refC.arg, "\n") | |
| 215 | |
| 216 ## computing median off all pools (or samples) for each variable | |
| 217 | |
| 218 refMeaVn <- apply(rawMN.arg[samDF.arg[, "sampleType"] == refC.arg, ], | |
| 219 2, | |
| 220 function(feaRefVn) mean(feaRefVn, na.rm = TRUE)) | |
| 221 | |
| 222 ## splitting data and sample metadata from each batch | |
| 223 | |
| 224 batRawLs <- split(as.data.frame(rawMN.arg), | |
| 225 f = samDF.arg[, "batch"]) | |
| 226 batRawLs <- lapply(batRawLs, function(inpDF) as.matrix(inpDF)) | |
| 227 | |
| 228 batSamLs <- split(as.data.frame(samDF.arg), | |
| 229 f = samDF.arg[, "batch"]) | |
| 230 | |
| 231 ## checking extrapolation: are there pools at the first and last observations of each batch | |
| 232 | |
| 233 if(refC.arg == "pool") { | |
| 234 pooExtML <- matrix(FALSE, nrow = 2, ncol = length(batRawLs), | |
| 235 dimnames = list(c("first", "last"), names(batRawLs))) | |
| 236 for(batC in names(batSamLs)) { | |
| 237 batSamTypVc <- batSamLs[[batC]][, "sampleType"] | |
| 238 pooExtML["first", batC] <- head(batSamTypVc, 1) == "pool" | |
| 239 pooExtML["last", batC] <- tail(batSamTypVc, 1) == "pool" | |
| 240 } | |
| 241 if(!all(c(pooExtML))) { | |
| 242 cat("\nWarning: Pools are missing at the first and/or last position of the following batches:\n") | |
| 243 pooExtBatVi <- which(!apply(pooExtML, 2, all)) | |
| 244 for(i in 1:length(pooExtBatVi)) | |
| 245 cat(names(pooExtBatVi)[i], ": ", | |
| 246 paste(rownames(pooExtML)[!pooExtML[, pooExtBatVi[i]]], collapse = ", "), "\n", sep = "") | |
| 247 cat("Extrapolating loess fits for these batches may result in inaccurate modeling!\n") | |
| 248 } | |
| 249 } | |
| 250 | |
| 251 ## normalizing | |
| 252 | |
| 253 nrmMN <- NULL ## normalized data matrix to be computed | |
| 254 | |
| 255 cat("\nProcessing batch:") | |
| 256 | |
| 257 for(batC in names(batRawLs)) { ## processing each batch individually | |
| 258 | |
| 259 cat("\n", batC) | |
| 260 | |
| 261 batRawMN <- batRawLs[[batC]] | |
| 262 batSamDF <- batSamLs[[batC]] | |
| 263 | |
| 264 batAllVi <- 1:nrow(batRawMN) | |
| 265 | |
| 266 batRefVi <- grep(refC.arg, batSamDF[, "sampleType"]) | |
| 267 | |
| 268 if(length(batRefVi) < 5) | |
| 269 cat("\nWarning: less than 5 '", refC.arg, "'; linear regression will be performed instead of loess regression for this batch\n", sep="") | |
| 270 | |
| 271 ## prediction of the loess fit | |
| 272 | |
| 273 batLoeMN <- apply(batRawMN, | |
| 274 2, | |
| 275 function(rawVn) loessF(rawVn, batRefVi, batAllVi, spnN=spnN.arg)) | |
| 276 | |
| 277 ## normalization | |
| 278 | |
| 279 batLoeMN[batLoeMN <= 0] <- NA | |
| 280 | |
| 281 batNrmMN <- batRawMN / batLoeMN | |
| 282 | |
| 283 nrmMN <- rbind(nrmMN, | |
| 284 batNrmMN) | |
| 285 | |
| 286 } | |
| 287 | |
| 288 cat("\n") | |
| 289 | |
| 290 nrmMN <- sweep(nrmMN, MARGIN = 2, STATS = refMeaVn, FUN = "*") | |
| 291 | |
| 292 return(nrmMN) | |
| 293 | |
| 294 } ## shiftBatchCorrectF |
