Mercurial > repos > mheinzl > fsd
comparison fsd.py @ 16:6bd9ef49d013 draft
planemo upload for repository https://github.com/monikaheinzl/duplexanalysis_galaxy/tree/master/tools/fsd commit dfaab79252a858e8df16bbea3607ebf1b6962e5a
| author | mheinzl |
|---|---|
| date | Mon, 08 Oct 2018 05:50:18 -0400 |
| parents | |
| children | 2e517a54eedc |
comparison
equal
deleted
inserted
replaced
| 15:32921a67437b | 16:6bd9ef49d013 |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 # Family size distribution of SSCSs | |
| 4 # | |
| 5 # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) | |
| 6 # Contact: monika.heinzl@edumail.at | |
| 7 # | |
| 8 # Takes at least one TABULAR file with tags before the alignment to the SSCS, but up to 4 files can be provided, as input. | |
| 9 # The program produces a plot which shows the distribution of family sizes of the all SSCSs from the input files and | |
| 10 # a tabular file with the data of the plot, as well as a TXT file with all tags of the DCS and their family sizes. | |
| 11 # If only one file is provided, then a family size distribution, which is separated after SSCSs without a partner and DCSs, is produced. | |
| 12 # Whereas a family size distribution with multiple data in one plot is produced, when more than one file (up to 4) is given. | |
| 13 | |
| 14 # USAGE: python FSD_Galaxy_1.4_commandLine_FINAL.py --inputFile1 filename --inputName1 filename --inputFile2 filename2 --inputName2 filename2 --inputFile3 filename3 --inputName3 filename3 --inputFile4 filename4 --inputName4 filename4 --output_tabular outptufile_name_tabular --output_pdf outptufile_name_pdf | |
| 15 | |
| 16 import argparse | |
| 17 import sys | |
| 18 | |
| 19 import matplotlib.pyplot as plt | |
| 20 import numpy | |
| 21 from matplotlib.backends.backend_pdf import PdfPages | |
| 22 | |
| 23 plt.switch_backend('agg') | |
| 24 | |
| 25 | |
| 26 def readFileReferenceFree(file): | |
| 27 with open(file, 'r') as dest_f: | |
| 28 data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype='string') | |
| 29 return(data_array) | |
| 30 | |
| 31 | |
| 32 def make_argparser(): | |
| 33 parser = argparse.ArgumentParser(description='Family Size Distribution of duplex sequencing data') | |
| 34 parser.add_argument('--inputFile1', help='Tabular File with three columns: ab or ba, tag and family size.') | |
| 35 parser.add_argument('--inputName1') | |
| 36 parser.add_argument('--inputFile2', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') | |
| 37 parser.add_argument('--inputName2') | |
| 38 parser.add_argument('--inputFile3', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') | |
| 39 parser.add_argument('--inputName3') | |
| 40 parser.add_argument('--inputFile4', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') | |
| 41 parser.add_argument('--inputName4') | |
| 42 parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf file.') | |
| 43 parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the tabular file.') | |
| 44 return parser | |
| 45 | |
| 46 | |
| 47 def compare_read_families(argv): | |
| 48 parser = make_argparser() | |
| 49 args = parser.parse_args(argv[1:]) | |
| 50 | |
| 51 firstFile = args.inputFile1 | |
| 52 name1 = args.inputName1 | |
| 53 | |
| 54 secondFile = args.inputFile2 | |
| 55 name2 = args.inputName2 | |
| 56 thirdFile = args.inputFile3 | |
| 57 name3 = args.inputName3 | |
| 58 fourthFile = args.inputFile4 | |
| 59 name4 = args.inputName4 | |
| 60 | |
| 61 title_file = args.output_tabular | |
| 62 title_file2 = args.output_pdf | |
| 63 | |
| 64 sep = "\t" | |
| 65 | |
| 66 plt.rc('figure', figsize=(11.69, 8.27)) # A4 format | |
| 67 plt.rcParams['patch.edgecolor'] = "black" | |
| 68 plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color | |
| 69 plt.rcParams['xtick.labelsize'] = 14 | |
| 70 plt.rcParams['ytick.labelsize'] = 14 | |
| 71 | |
| 72 list_to_plot = [] | |
| 73 label = [] | |
| 74 data_array_list = [] | |
| 75 with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: | |
| 76 fig = plt.figure() | |
| 77 plt.subplots_adjust(bottom=0.25) | |
| 78 if firstFile != str(None): | |
| 79 file1 = readFileReferenceFree(firstFile) | |
| 80 integers = numpy.array(file1[:, 0]).astype(int) # keep original family sizes | |
| 81 | |
| 82 # for plot: replace all big family sizes by 22 | |
| 83 data1 = numpy.array(file1[:, 0]).astype(int) | |
| 84 bigFamilies = numpy.where(data1 > 20)[0] | |
| 85 data1[bigFamilies] = 22 | |
| 86 | |
| 87 name1 = name1.split(".tabular")[0] | |
| 88 list_to_plot.append(data1) | |
| 89 label.append(name1) | |
| 90 data_array_list.append(file1) | |
| 91 | |
| 92 legend = "\n\n\n{}".format(name1) | |
| 93 plt.text(0.1, 0.11, legend, size=12, transform=plt.gcf().transFigure) | |
| 94 legend1 = "singletons:\nabsolute nr.\n{:,}".format(numpy.bincount(data1)[1]) | |
| 95 plt.text(0.4, 0.11, legend1, size=12, transform=plt.gcf().transFigure) | |
| 96 | |
| 97 legend3 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[1]) / len(data1)) | |
| 98 plt.text(0.5, 0.11, legend3, size=12, transform=plt.gcf().transFigure) | |
| 99 | |
| 100 legend4 = "family size > 20:\nabsolute nr.\n{:,}".format(numpy.bincount(data1)[len(numpy.bincount(data1)) - 1].astype(int)) | |
| 101 plt.text(0.6, 0.11, legend4, size=12, transform=plt.gcf().transFigure) | |
| 102 | |
| 103 legend5 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[len(numpy.bincount(data1)) - 1]) / len(data1)) | |
| 104 plt.text(0.7, 0.11, legend5, size=12, transform=plt.gcf().transFigure) | |
| 105 | |
| 106 legend6 = "total length\n{:,}".format(len(data1)) | |
| 107 plt.text(0.8, 0.11, legend6, size=12, transform=plt.gcf().transFigure) | |
| 108 | |
| 109 if secondFile != str(None): | |
| 110 file2 = readFileReferenceFree(secondFile) | |
| 111 data2 = numpy.asarray(file2[:, 0]).astype(int) | |
| 112 bigFamilies2 = numpy.where(data2 > 20)[0] | |
| 113 data2[bigFamilies2] = 22 | |
| 114 | |
| 115 list_to_plot.append(data2) | |
| 116 name2 = name2.split(".tabular")[0] | |
| 117 label.append(name2) | |
| 118 data_array_list.append(file2) | |
| 119 | |
| 120 plt.text(0.1, 0.09, name2, size=12, transform=plt.gcf().transFigure) | |
| 121 | |
| 122 legend1 = "{:,}".format(numpy.bincount(data2)[1]) | |
| 123 plt.text(0.4, 0.09, legend1, size=12, transform=plt.gcf().transFigure) | |
| 124 | |
| 125 legend3 = "{:.3f}".format(float(numpy.bincount(data2)[1]) / len(data2)) | |
| 126 plt.text(0.5, 0.09, legend3, size=12, transform=plt.gcf().transFigure) | |
| 127 | |
| 128 legend4 = "{:,}".format(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1].astype(int)) | |
| 129 plt.text(0.6, 0.09, legend4, size=12, transform=plt.gcf().transFigure) | |
| 130 | |
| 131 legend5 = "{:.3f}".format(float(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1]) / len(data2)) | |
| 132 plt.text(0.7, 0.09, legend5, size=12, transform=plt.gcf().transFigure) | |
| 133 | |
| 134 legend6 = "{:,}".format(len(data2)) | |
| 135 plt.text(0.8, 0.09, legend6, size=12, transform=plt.gcf().transFigure) | |
| 136 | |
| 137 if thirdFile != str(None): | |
| 138 file3 = readFileReferenceFree(thirdFile) | |
| 139 | |
| 140 data3 = numpy.asarray(file3[:, 0]).astype(int) | |
| 141 bigFamilies3 = numpy.where(data3 > 20)[0] | |
| 142 data3[bigFamilies3] = 22 | |
| 143 | |
| 144 list_to_plot.append(data3) | |
| 145 name3 = name3.split(".tabular")[0] | |
| 146 label.append(name3) | |
| 147 data_array_list.append(file3) | |
| 148 | |
| 149 plt.text(0.1, 0.07, name3, size=12, transform=plt.gcf().transFigure) | |
| 150 | |
| 151 legend1 = "{:,}".format(numpy.bincount(data3)[1]) | |
| 152 plt.text(0.4, 0.07, legend1, size=12, transform=plt.gcf().transFigure) | |
| 153 | |
| 154 legend3 = "{:.3f}".format(float(numpy.bincount(data3)[1]) / len(data3)) | |
| 155 plt.text(0.5, 0.07, legend3, size=12, transform=plt.gcf().transFigure) | |
| 156 | |
| 157 legend4 = "{:,}".format(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1].astype(int)) | |
| 158 plt.text(0.6, 0.07, legend4, size=12, transform=plt.gcf().transFigure) | |
| 159 | |
| 160 legend5 = "{:.3f}".format(float(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1]) / len(data3)) | |
| 161 plt.text(0.7, 0.07, legend5, size=12, transform=plt.gcf().transFigure) | |
| 162 | |
| 163 legend6 = "{:,}".format(len(data3)) | |
| 164 plt.text(0.8, 0.07, legend6, size=12, transform=plt.gcf().transFigure) | |
| 165 | |
| 166 if fourthFile != str(None): | |
| 167 file4 = readFileReferenceFree(fourthFile) | |
| 168 | |
| 169 data4 = numpy.asarray(file4[:, 0]).astype(int) | |
| 170 | |
| 171 bigFamilies4 = numpy.where(data4 > 20)[0] | |
| 172 data4[bigFamilies4] = 22 | |
| 173 | |
| 174 list_to_plot.append(data4) | |
| 175 name4 = name4.split(".tabular")[0] | |
| 176 label.append(name4) | |
| 177 data_array_list.append(file4) | |
| 178 | |
| 179 plt.text(0.1, 0.05, name4, size=12, transform=plt.gcf().transFigure) | |
| 180 | |
| 181 legend1 = "{:,}".format(numpy.bincount(data4)[1]) | |
| 182 plt.text(0.4, 0.05, legend1, size=12, transform=plt.gcf().transFigure) | |
| 183 | |
| 184 legend4 = "{:.3f}".format(float(numpy.bincount(data4)[1]) / len(data4)) | |
| 185 plt.text(0.5, 0.05, legend4, size=12, transform=plt.gcf().transFigure) | |
| 186 | |
| 187 legend4 = "{:,}".format(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1].astype(int)) | |
| 188 plt.text(0.6, 0.05, legend4, size=12, transform=plt.gcf().transFigure) | |
| 189 | |
| 190 legend5 = "{:.3f}".format(float(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1]) / len(data4)) | |
| 191 plt.text(0.7, 0.05, legend5, size=12, transform=plt.gcf().transFigure) | |
| 192 | |
| 193 legend6 = "{:,}".format(len(data4)) | |
| 194 plt.text(0.8, 0.05, legend6, size=12, transform=plt.gcf().transFigure) | |
| 195 | |
| 196 maximumX = numpy.amax(numpy.concatenate(list_to_plot)) | |
| 197 minimumX = numpy.amin(numpy.concatenate(list_to_plot)) | |
| 198 | |
| 199 counts = plt.hist(list_to_plot, bins=range(minimumX, maximumX + 1), stacked=False, edgecolor="black", | |
| 200 linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8) | |
| 201 | |
| 202 ticks = numpy.arange(minimumX - 1, maximumX, 1) | |
| 203 ticks1 = map(str, ticks) | |
| 204 ticks1[len(ticks1) - 1] = ">20" | |
| 205 plt.xticks(numpy.array(ticks), ticks1) | |
| 206 | |
| 207 plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) | |
| 208 # plt.title("Family Size Distribution", fontsize=14) | |
| 209 plt.xlabel("Family size", fontsize=14) | |
| 210 plt.ylabel("Absolute Frequency", fontsize=14) | |
| 211 plt.margins(0.01, None) | |
| 212 plt.grid(b=True, which="major", color="#424242", linestyle=":") | |
| 213 pdf.savefig(fig) | |
| 214 plt.close() | |
| 215 | |
| 216 # write data to CSV file | |
| 217 output_file.write("Values from family size distribution with all datasets\n") | |
| 218 output_file.write("\nFamily size") | |
| 219 for i in label: | |
| 220 output_file.write("{}{}".format(sep, i)) | |
| 221 # output_file.write("{}sum".format(sep)) | |
| 222 output_file.write("\n") | |
| 223 j = 0 | |
| 224 for fs in counts[1][0:len(counts[1]) - 1]: | |
| 225 if fs == 21: | |
| 226 fs = ">20" | |
| 227 else: | |
| 228 fs = "={}".format(fs) | |
| 229 output_file.write("FS{}{}".format(fs, sep)) | |
| 230 if len(label) == 1: | |
| 231 output_file.write("{}{}".format(int(counts[0][j]), sep)) | |
| 232 else: | |
| 233 for n in range(len(label)): | |
| 234 output_file.write("{}{}".format(int(counts[0][n][j]), sep)) | |
| 235 output_file.write("\n") | |
| 236 j += 1 | |
| 237 output_file.write("sum{}".format(sep)) | |
| 238 if len(label) == 1: | |
| 239 output_file.write("{}{}".format(int(sum(counts[0])), sep)) | |
| 240 else: | |
| 241 for i in counts[0]: | |
| 242 output_file.write("{}{}".format(int(sum(i)), sep)) | |
| 243 | |
| 244 # Family size distribution after DCS and SSCS | |
| 245 for dataset, data, name_file in zip(list_to_plot, data_array_list, label): | |
| 246 maximumX = numpy.amax(dataset) | |
| 247 minimumX = numpy.amin(dataset) | |
| 248 | |
| 249 tags = numpy.array(data[:, 2]) | |
| 250 seq = numpy.array(data[:, 1]) | |
| 251 data = numpy.array(dataset) | |
| 252 | |
| 253 # find all unique tags and get the indices for ALL tags, but only once | |
| 254 u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) | |
| 255 d = u[c > 1] | |
| 256 | |
| 257 # get family sizes, tag for duplicates | |
| 258 duplTags_double = data[numpy.in1d(seq, d)] | |
| 259 duplTags = duplTags_double[0::2] # ab of DCS | |
| 260 duplTagsBA = duplTags_double[1::2] # ba of DCS | |
| 261 | |
| 262 # duplTags_double_tag = tags[numpy.in1d(seq, d)] | |
| 263 # duplTags_double_seq = seq[numpy.in1d(seq, d)] | |
| 264 | |
| 265 # get family sizes for SSCS with no partner | |
| 266 ab = numpy.where(tags == "ab")[0] | |
| 267 abSeq = seq[ab] | |
| 268 ab = data[ab] | |
| 269 ba = numpy.where(tags == "ba")[0] | |
| 270 baSeq = seq[ba] | |
| 271 ba = data[ba] | |
| 272 | |
| 273 dataAB = ab[numpy.in1d(abSeq, d, invert=True)] | |
| 274 dataBA = ba[numpy.in1d(baSeq, d, invert=True)] | |
| 275 | |
| 276 list1 = [duplTags_double, dataAB, dataBA] # list for plotting | |
| 277 | |
| 278 # information for family size >= 3 | |
| 279 dataAB_FS3 = dataAB[dataAB >= 3] | |
| 280 dataBA_FS3 = dataBA[dataBA >= 3] | |
| 281 ab_FS3 = ab[ab >= 3] | |
| 282 ba_FS3 = ba[ba >= 3] | |
| 283 | |
| 284 duplTags_FS3 = duplTags[(duplTags >= 3) & (duplTagsBA >= 3)] # ab+ba with FS>=3 | |
| 285 duplTags_FS3_BA = duplTagsBA[(duplTags >= 3) & (duplTagsBA >= 3)] # ba+ab with FS>=3 | |
| 286 duplTags_double_FS3 = len(duplTags_FS3) + len(duplTags_FS3_BA) # both ab and ba strands with FS>=3 | |
| 287 | |
| 288 fig = plt.figure() | |
| 289 | |
| 290 plt.subplots_adjust(bottom=0.3) | |
| 291 counts = plt.hist(list1, bins=range(minimumX, maximumX + 1), stacked=True, label=["duplex", "ab", "ba"], edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"]) | |
| 292 # tick labels of x axis | |
| 293 ticks = numpy.arange(minimumX - 1, maximumX, 1) | |
| 294 ticks1 = map(str, ticks) | |
| 295 ticks1[len(ticks1) - 1] = ">20" | |
| 296 plt.xticks(numpy.array(ticks), ticks1) | |
| 297 singl = counts[0][2][0] # singletons | |
| 298 last = counts[0][2][len(counts[0][0]) - 1] # large families | |
| 299 | |
| 300 plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) | |
| 301 # plt.title(name1, fontsize=14) | |
| 302 plt.xlabel("Family size", fontsize=14) | |
| 303 plt.ylabel("Absolute Frequency", fontsize=14) | |
| 304 plt.margins(0.01, None) | |
| 305 plt.grid(b=True, which="major", color="#424242", linestyle=":") | |
| 306 | |
| 307 # extra information beneath the plot | |
| 308 legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \nlength of dataset=" | |
| 309 plt.text(0.1, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
| 310 | |
| 311 legend = "absolute numbers\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,}".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags))) | |
| 312 plt.text(0.35, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
| 313 | |
| 314 legend = "relative frequencies\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format(float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) | |
| 315 plt.text(0.54, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
| 316 | |
| 317 legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) | |
| 318 plt.text(0.64, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
| 319 | |
| 320 legend1 = "\nsingletons:\nfamily size > 20:" | |
| 321 plt.text(0.1, 0.03, legend1, size=12, transform=plt.gcf().transFigure) | |
| 322 | |
| 323 legend4 = "{:,}\n{:,}".format(singl.astype(int), last.astype(int)) | |
| 324 plt.text(0.35, 0.03, legend4, size=12, transform=plt.gcf().transFigure) | |
| 325 | |
| 326 legend3 = "{:.3f}\n{:.3f}".format(singl / len(data), last / len(data)) | |
| 327 plt.text(0.54, 0.03, legend3, size=12, transform=plt.gcf().transFigure) | |
| 328 | |
| 329 pdf.savefig(fig) | |
| 330 plt.close() | |
| 331 | |
| 332 # write same information to a csv file | |
| 333 count = numpy.bincount(integers) # original counts of family sizes | |
| 334 output_file.write("\nDataset:{}{}\n".format(sep, name_file)) | |
| 335 output_file.write("max. family size:{}{}\n".format(sep, max(integers))) | |
| 336 output_file.write("absolute frequency:{}{}\n".format(sep, count[len(count) - 1])) | |
| 337 output_file.write("relative frequency:{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count))) | |
| 338 | |
| 339 output_file.write("{}singletons:{}{}family size > 20:\n".format(sep, sep, sep)) | |
| 340 output_file.write("{}absolute nr.{}rel. freq{}absolute nr.{}rel. freq{}total length\n".format(sep, sep, sep, sep, sep)) | |
| 341 output_file.write("{}{}{}{}{:.3f}{}{}{}{:.3f}{}{}\n\n".format(name_file, sep, singl.astype(int), sep, singl / len(data), sep, last.astype(int), sep, last / len(data), sep, len(data))) | |
| 342 | |
| 343 # information for FS >= 1 | |
| 344 output_file.write("The unique frequencies were calculated from the dataset where the tags occured only once (=ab without DCS, ba without DCS)\nWhereas the total frequencies were calculated from the whole dataset (=including the DCS).\n\n") | |
| 345 output_file.write("FS >= 1{}{}unique:{}total:\n".format(sep, sep, sep)) | |
| 346 output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB), sep, float(len(dataAB)) / (len(dataAB) + len(dataBA) + len( duplTags)), sep, float(len(dataAB)) / (len(ab) + len(ba)))) | |
| 347 output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA), sep, float(len(dataBA)) / (len(dataBA) + len(dataBA) + len(duplTags)), sep, float(len(dataBA)) / (len(ba) + len(ba)))) | |
| 348 output_file.write("nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags), len(duplTags_double), sep, float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(duplTags)) / ( len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)))) | |
| 349 output_file.write("length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(ab) + len(ba)))) | |
| 350 # information for FS >= 3 | |
| 351 output_file.write("FS >= 3{}{}unique:{}total:\n".format(sep, sep, sep)) | |
| 352 output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB_FS3), sep, float(len(dataAB_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataAB_FS3)) / (len(ab_FS3) + len(ba_FS3)))) | |
| 353 output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA_FS3), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataBA_FS3)) / (len(ba_FS3) + len(ba_FS3)))) | |
| 354 output_file.write("nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags_FS3), duplTags_double_FS3, sep, float(len( duplTags_FS3)) / (len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(duplTags_FS3)) / (len(ab_FS3) + len(ba_FS3)), float(duplTags_double_FS3) / (len(ab_FS3) + len(ba_FS3)))) | |
| 355 output_file.write("length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(ab_FS3) + len(ba_FS3)))) | |
| 356 | |
| 357 output_file.write("\nValues from family size distribution\n") | |
| 358 output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) | |
| 359 for dx, ab, ba, fs in zip(counts[0][0], counts[0][1], counts[0][2], counts[1]): | |
| 360 if fs == 21: | |
| 361 fs = ">20" | |
| 362 else: | |
| 363 fs = "={}".format(fs) | |
| 364 ab1 = ab - dx | |
| 365 ba1 = ba - ab | |
| 366 output_file.write("FS{}{}{}{}{}{}{}{}{}\n".format(fs, sep, int(dx), sep, int(ab1), sep, int(ba1), sep, int(ba))) | |
| 367 | |
| 368 print("Files successfully created!") | |
| 369 | |
| 370 | |
| 371 if __name__ == '__main__': | |
| 372 sys.exit(compare_read_families(sys.argv)) |
