Mercurial > repos > mheinzl > fsd
comparison fsd.py @ 0:9736b9d04a0b draft
planemo upload for repository https://github.com/monikaheinzl/galaxyProject/tree/master/tools/fsd commit f674213e798956531c935e7b9eb7f444286d0a5e-dirty
author | mheinzl |
---|---|
date | Wed, 25 Apr 2018 08:59:17 -0400 |
parents | |
children | 648d5df50ca8 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9736b9d04a0b |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 # Family size distribution of SSCSs | |
4 # | |
5 # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) | |
6 # Contact: monika.heinzl@edumail.at | |
7 # | |
8 # Takes at least one TABULAR file with tags before the alignment to the SSCS, but up to 4 files can be provided, as input. | |
9 # The program produces a plot which shows the distribution of family sizes of the all SSCSs from the input files and | |
10 # a CSV file with the data of the plot, as well as a TXT file with all tags of the DCS and their family sizes. | |
11 # If only one file is provided, then a family size distribution, which is separated after SSCSs without a partner and DCSs, is produced. | |
12 # Whereas a family size distribution with multiple data in one plot is produced, when more than one file (up to 4) is given. | |
13 | |
14 # USAGE: python FSD_Galaxy_1.4_commandLine_FINAL.py filename --inputFile2 filename2 --inputFile3 filename3 --inputFile4 filename4 / | |
15 # --title_file outputFileName --sep "characterWhichSeparatesCSVFile" | |
16 | |
17 import numpy | |
18 import matplotlib.pyplot as plt | |
19 from matplotlib.backends.backend_pdf import PdfPages | |
20 import argparse | |
21 import sys | |
22 import os | |
23 import re | |
24 from Cheetah.Template import Template | |
25 | |
26 def readFileReferenceFree(file): | |
27 with open(file, 'r') as dest_f: | |
28 data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype='string') | |
29 return(data_array) | |
30 | |
31 def make_argparser(): | |
32 parser = argparse.ArgumentParser(description='Family Size Distribution of duplex sequencing data') | |
33 parser.add_argument('inputFile', | |
34 help='Tabular File with three columns: ab or ba, tag and family size.') | |
35 parser.add_argument('--inputName1') | |
36 parser.add_argument('--inputFile2',default=None, | |
37 help='Tabular File with three columns: ab or ba, tag and family size.') | |
38 parser.add_argument('--inputName2') | |
39 parser.add_argument('--inputFile3',default=None, | |
40 help='Tabular File with three columns: ab or ba, tag and family size.') | |
41 parser.add_argument('--inputName3') | |
42 parser.add_argument('--inputFile4',default=None, | |
43 help='Tabular File with three columns: ab or ba, tag and family size.') | |
44 parser.add_argument('--inputName4') | |
45 parser.add_argument('--sep', default=",", | |
46 help='Separator in the csv file.') | |
47 parser.add_argument('--output_csv', default="data.csv",type=str, | |
48 help='Name of the pdf and csv file.') | |
49 parser.add_argument('--output_pdf', default="data.pdf",type=str, | |
50 help='Name of the pdf and csv file.') | |
51 return parser | |
52 | |
53 def compare_read_families(argv): | |
54 parser = make_argparser() | |
55 args=parser.parse_args(argv[1:]) | |
56 | |
57 firstFile = args.inputFile | |
58 name1 = args.inputName1 | |
59 secondFile = args.inputFile2 | |
60 name2 = args.inputName2 | |
61 thirdFile = args.inputFile3 | |
62 name3 = args.inputName3 | |
63 fourthFile = args.inputFile4 | |
64 name4 = args.inputName4 | |
65 | |
66 title_file = args.output_csv | |
67 title_file2 = args.output_pdf | |
68 sep = args.sep | |
69 | |
70 if type(sep) is not str or len(sep)>1: | |
71 print("Error: --sep must be a single character.") | |
72 exit(4) | |
73 | |
74 plt.rc('figure', figsize=(11.69, 8.27)) # A4 format | |
75 plt.rcParams['patch.edgecolor'] = "black" | |
76 plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color | |
77 plt.rcParams['xtick.labelsize'] = 12 | |
78 plt.rcParams['ytick.labelsize'] = 12 | |
79 | |
80 list_to_plot = [] | |
81 label = [] | |
82 data_array_list = [] | |
83 | |
84 with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: | |
85 fig = plt.figure() | |
86 plt.subplots_adjust(bottom=0.25) | |
87 if firstFile != str(None): | |
88 file1 = readFileReferenceFree(firstFile) | |
89 integers = numpy.array(file1[:, 0]).astype(int) ## keep original family sizes | |
90 | |
91 # for plot: replace all big family sizes by 22 | |
92 data1 = numpy.array(file1[:, 0]).astype(int) | |
93 bigFamilies = numpy.where(data1 > 20)[0] | |
94 data1[bigFamilies] = 22 | |
95 | |
96 name1 = name1.split(".tabular")[0] | |
97 list_to_plot.append(data1) | |
98 label.append(name1) | |
99 data_array_list.append(file1) | |
100 | |
101 legend = "\n\n\n{}".format(name1) | |
102 plt.text(0.1, 0.11, legend, size=12, transform=plt.gcf().transFigure) | |
103 legend1 = "singletons:\nabsolute nr.\n{:,}".format(numpy.bincount(data1)[1]) | |
104 plt.text(0.4, 0.11, legend1, size=12, transform=plt.gcf().transFigure) | |
105 | |
106 legend3 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[1]) / len(data1)) | |
107 plt.text(0.5, 0.11, legend3, size=12, transform=plt.gcf().transFigure) | |
108 | |
109 legend4 = "family size > 20:\nabsolute nr.\n{:,}".format( | |
110 numpy.bincount(data1)[len(numpy.bincount(data1)) - 1].astype(int)) | |
111 plt.text(0.6, 0.11, legend4, size=12, transform=plt.gcf().transFigure) | |
112 | |
113 legend5 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[len(numpy.bincount(data1)) - 1]) / len(data1)) | |
114 plt.text(0.7, 0.11, legend5, size=12, transform=plt.gcf().transFigure) | |
115 | |
116 legend6 = "total length\n{:,}".format(len(data1)) | |
117 plt.text(0.8, 0.11, legend6, size=12, transform=plt.gcf().transFigure) | |
118 | |
119 if secondFile != str(None): | |
120 file2 = readFileReferenceFree(secondFile) | |
121 data2 = numpy.asarray(file2[:, 0]).astype(int) | |
122 bigFamilies2 = numpy.where(data2 > 20)[0] | |
123 data2[bigFamilies2] = 22 | |
124 | |
125 list_to_plot.append(data2) | |
126 name2 = name2.split(".tabular")[0] | |
127 label.append(name2) | |
128 data_array_list.append(file2) | |
129 | |
130 plt.text(0.1, 0.09, name2, size=12, transform=plt.gcf().transFigure) | |
131 | |
132 legend1 = "{:,}".format(numpy.bincount(data2)[1]) | |
133 plt.text(0.4, 0.09, legend1, size=12, transform=plt.gcf().transFigure) | |
134 | |
135 legend3 = "{:.3f}".format(float(numpy.bincount(data2)[1]) / len(data2)) | |
136 plt.text(0.5, 0.09, legend3, size=12, transform=plt.gcf().transFigure) | |
137 | |
138 legend4 = "{:,}".format(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1].astype(int)) | |
139 plt.text(0.6, 0.09, legend4, size=12, transform=plt.gcf().transFigure) | |
140 | |
141 legend5 = "{:.3f}".format(float(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1]) / len(data2)) | |
142 plt.text(0.7, 0.09, legend5, size=12, transform=plt.gcf().transFigure) | |
143 | |
144 legend6 = "{:,}".format(len(data2)) | |
145 plt.text(0.8, 0.09, legend6, size=12, transform=plt.gcf().transFigure) | |
146 | |
147 if thirdFile != str(None): | |
148 file3 = readFileReferenceFree(thirdFile) | |
149 | |
150 data3 = numpy.asarray(file3[:, 0]).astype(int) | |
151 bigFamilies3 = numpy.where(data3 > 20)[0] | |
152 data3[bigFamilies3] = 22 | |
153 | |
154 list_to_plot.append(data3) | |
155 name3 = name3.split(".tabular")[0] | |
156 label.append(name3) | |
157 data_array_list.append(file3) | |
158 | |
159 plt.text(0.1, 0.07, name3, size=12, transform=plt.gcf().transFigure) | |
160 | |
161 legend1 = "{:,}".format(numpy.bincount(data3)[1]) | |
162 plt.text(0.4, 0.07, legend1, size=12, transform=plt.gcf().transFigure) | |
163 | |
164 legend3 = "{:.3f}".format(float(numpy.bincount(data3)[1]) / len(data3)) | |
165 plt.text(0.5, 0.07, legend3, size=12, transform=plt.gcf().transFigure) | |
166 | |
167 legend4 = "{:,}".format(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1].astype(int)) | |
168 plt.text(0.6, 0.07, legend4, size=12, transform=plt.gcf().transFigure) | |
169 | |
170 legend5 = "{:.3f}".format(float(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1]) / len(data3)) | |
171 plt.text(0.7, 0.07, legend5, size=12, transform=plt.gcf().transFigure) | |
172 | |
173 legend6 = "{:,}".format(len(data3)) | |
174 plt.text(0.8, 0.07, legend6, size=12, transform=plt.gcf().transFigure) | |
175 | |
176 if fourthFile != str(None): | |
177 file4 = readFileReferenceFree(fourthFile) | |
178 | |
179 data4 = numpy.asarray(file4[:, 0]).astype(int) | |
180 bigFamilies4 = numpy.where(data4 > 20)[0] | |
181 data4[bigFamilies4] = 22 | |
182 | |
183 list_to_plot.append(data4) | |
184 name4 = name4.split(".tabular")[0] | |
185 label.append(name4) | |
186 data_array_list.append(file4) | |
187 | |
188 plt.text(0.1, 0.05, name4, size=12, transform=plt.gcf().transFigure) | |
189 | |
190 legend1 = "{:,}".format(numpy.bincount(data4)[1]) | |
191 plt.text(0.4, 0.05, legend1, size=12, transform=plt.gcf().transFigure) | |
192 | |
193 legend4 = "{:.3f}".format(float(numpy.bincount(data4)[1]) / len(data4)) | |
194 plt.text(0.5, 0.05, legend4, size=12, transform=plt.gcf().transFigure) | |
195 | |
196 legend4 = "{:,}".format(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1].astype(int)) | |
197 plt.text(0.6, 0.05, legend4, size=12, transform=plt.gcf().transFigure) | |
198 | |
199 legend5 = "{:.3f}".format(float(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1]) / len(data4)) | |
200 plt.text(0.7, 0.05, legend5, size=12, transform=plt.gcf().transFigure) | |
201 | |
202 legend6 = "{:,}".format(len(data4)) | |
203 plt.text(0.8, 0.05, legend6, size=12, transform=plt.gcf().transFigure) | |
204 | |
205 maximumX = numpy.amax(numpy.concatenate(list_to_plot)) | |
206 minimumX = numpy.amin(numpy.concatenate(list_to_plot)) | |
207 | |
208 counts = plt.hist(list_to_plot, bins=range(minimumX, maximumX + 1), stacked=False, edgecolor="black", | |
209 linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8) | |
210 | |
211 ticks = numpy.arange(minimumX - 1, maximumX, 1) | |
212 ticks1 = map(str, ticks) | |
213 ticks1[len(ticks1) - 1] = ">20" | |
214 plt.xticks(numpy.array(ticks), ticks1) | |
215 | |
216 plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) | |
217 plt.title("Family Size Distribution", fontsize=14) | |
218 plt.xlabel("No. of Family Members", fontsize=14) | |
219 plt.ylabel("Absolute Frequency", fontsize=14) | |
220 plt.margins(0.01, None) | |
221 plt.grid(b=True, which="major", color="#424242", linestyle=":") | |
222 pdf.savefig(fig) | |
223 plt.close() | |
224 | |
225 # write data to CSV file | |
226 output_file.write("Values from family size distribution with all datasets\n") | |
227 output_file.write("\nFamily size") | |
228 for i in label: | |
229 output_file.write("{}{}".format(sep, i)) | |
230 output_file.write("{}sum".format(sep)) | |
231 output_file.write("\n") | |
232 j = 0 | |
233 for fs in counts[1][0:len(counts[1]) - 1]: | |
234 if fs == 21: | |
235 fs = ">20" | |
236 else: | |
237 fs = "={}".format(fs) | |
238 output_file.write("FS{}{}".format(fs, sep)) | |
239 values_of_fs = [] | |
240 if len(label) == 1: | |
241 output_file.write("{}{}".format(int(counts[0][j]), sep)) | |
242 values_of_fs.append(int(counts[0][j])) | |
243 else: | |
244 for n in range(len(label)): | |
245 output_file.write("{}{}".format(int(counts[0][n][j]), sep)) | |
246 values_of_fs.append(int(counts[0][n][j])) | |
247 output_file.write("{}\n".format(sum(values_of_fs))) | |
248 j += 1 | |
249 output_file.write("sum{}".format(sep)) | |
250 values_for_sum = [] | |
251 if len(label) == 1: | |
252 output_file.write("{}{}".format(int(sum(counts[0])), sep)) | |
253 values_for_sum.append(int(sum(counts[0]))) | |
254 else: | |
255 for i in counts[0]: | |
256 output_file.write("{}{}".format(int(sum(i)), sep)) | |
257 values_for_sum.append(int(sum(i))) | |
258 | |
259 output_file.write("{}\n".format(sum(values_for_sum))) | |
260 | |
261 ### Family size distribution after DCS and SSCS | |
262 for dataset, data, name_file in zip(list_to_plot, data_array_list, label): | |
263 maximumX = numpy.amax(dataset) | |
264 minimumX = numpy.amin(dataset) | |
265 | |
266 tags = numpy.array(data[:, 2]) | |
267 seq = numpy.array(data[:, 1]) | |
268 data = numpy.array(dataset) | |
269 | |
270 # find all unique tags and get the indices for ALL tags, but only once | |
271 u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) | |
272 d = u[c > 1] | |
273 | |
274 # get family sizes, tag for duplicates | |
275 duplTags_double = data[numpy.in1d(seq, d)] | |
276 duplTags = duplTags_double[0::2] # ab of DCS | |
277 duplTagsBA = duplTags_double[1::2] # ba of DCS | |
278 | |
279 duplTags_double_tag = tags[numpy.in1d(seq, d)] | |
280 duplTags_double_seq = seq[numpy.in1d(seq, d)] | |
281 | |
282 # get family sizes for SSCS with no partner | |
283 ab = numpy.where(tags == "ab")[0] | |
284 abSeq = seq[ab] | |
285 ab = data[ab] | |
286 ba = numpy.where(tags == "ba")[0] | |
287 baSeq = seq[ba] | |
288 ba = data[ba] | |
289 | |
290 dataAB = ab[numpy.in1d(abSeq, d, invert=True)] | |
291 dataBA = ba[numpy.in1d(baSeq, d, invert=True)] | |
292 | |
293 # write DCS tags to file | |
294 # with open("DCS information_{}.txt".format(firstFile), "w") as file: | |
295 # for t, s, f in zip(duplTags_double_tag, duplTags_double_seq, duplTags_double): | |
296 # file.write("{}\t{}\t{}\n".format(t, s, f)) | |
297 | |
298 list1 = [duplTags_double, dataAB, dataBA] # list for plotting | |
299 | |
300 ## information for family size >= 3 | |
301 dataAB_FS3 = dataAB[dataAB >= 3] | |
302 dataBA_FS3 = dataBA[dataBA >= 3] | |
303 ab_FS3 = ab[ab >= 3] | |
304 ba_FS3 = ba[ba >= 3] | |
305 | |
306 duplTags_FS3 = duplTags[(duplTags >= 3) & (duplTagsBA >= 3)] # ab+ba with FS>=3 | |
307 duplTags_FS3_BA = duplTagsBA[(duplTags >= 3) & (duplTagsBA >= 3)] # ba+ab with FS>=3 | |
308 duplTags_double_FS3 = len(duplTags_FS3)+len(duplTags_FS3_BA) # both ab and ba strands with FS>=3 | |
309 | |
310 fig = plt.figure() | |
311 | |
312 plt.subplots_adjust(bottom=0.3) | |
313 counts = plt.hist(list1, bins=range(minimumX, maximumX + 1), stacked=True, | |
314 label=["duplex", "ab", "ba"], edgecolor="black", linewidth=1, | |
315 align="left", color=["#FF0000", "#5FB404", "#FFBF00"]) | |
316 # tick labels of x axis | |
317 ticks = numpy.arange(minimumX - 1, maximumX, 1) | |
318 ticks1 = map(str, ticks) | |
319 ticks1[len(ticks1) - 1] = ">20" | |
320 plt.xticks(numpy.array(ticks), ticks1) | |
321 singl = counts[0][2][0] # singletons | |
322 last = counts[0][2][len(counts[0][0]) - 1] # large families | |
323 | |
324 plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) | |
325 plt.title(name1, fontsize=14) | |
326 plt.xlabel("No. of Family Members", fontsize=14) | |
327 plt.ylabel("Absolute Frequency", fontsize=14) | |
328 plt.margins(0.01, None) | |
329 plt.grid(b=True, which="major", color="#424242", linestyle=":") | |
330 | |
331 ## extra information beneath the plot | |
332 legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \nlength of dataset=" | |
333 plt.text(0.1, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
334 | |
335 legend = "absolute numbers\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,}" \ | |
336 .format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), | |
337 (len(dataAB) + len(dataBA) + len(duplTags))) | |
338 plt.text(0.35, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
339 | |
340 legend = "relative frequencies\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}" \ | |
341 .format(float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), | |
342 float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), | |
343 float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), | |
344 (len(dataAB) + len(dataBA) + len(duplTags))) | |
345 plt.text(0.54, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
346 | |
347 legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}" \ | |
348 .format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), | |
349 float(len(duplTags)) / (len(ab) + len(ba)), | |
350 float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) | |
351 plt.text(0.64, 0.09, legend, size=12, transform=plt.gcf().transFigure) | |
352 | |
353 legend1 = "\nsingletons:\nfamily size > 20:" | |
354 plt.text(0.1, 0.03, legend1, size=12, transform=plt.gcf().transFigure) | |
355 | |
356 legend4 = "{:,}\n{:,}".format(singl.astype(int), last.astype(int)) | |
357 plt.text(0.35, 0.03, legend4, size=12, transform=plt.gcf().transFigure) | |
358 | |
359 legend3 = "{:.3f}\n{:.3f}".format(singl / len(data),last / len(data)) | |
360 plt.text(0.54, 0.03, legend3, size=12, transform=plt.gcf().transFigure) | |
361 | |
362 pdf.savefig(fig) | |
363 plt.close() | |
364 | |
365 # write same information to a csv file | |
366 count = numpy.bincount(integers) # original counts of family sizes | |
367 output_file.write("\nDataset:{}{}\n".format(sep, name_file)) | |
368 output_file.write("max. family size:{}{}\n".format(sep, max(integers))) | |
369 output_file.write("absolute frequency:{}{}\n".format(sep, count[len(count) - 1])) | |
370 output_file.write("relative frequency:{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count))) | |
371 | |
372 output_file.write("{}singletons:{}{}family size > 20:\n".format(sep, sep, sep)) | |
373 output_file.write( | |
374 "{}absolute nr.{}rel. freq{}absolute nr.{}rel. freq{}total length\n".format(sep, sep, sep, sep, sep)) | |
375 output_file.write("{}{}{}{}{:.3f}{}{}{}{:.3f}{}{}\n\n".format(name_file, sep, singl.astype(int), sep, | |
376 singl / len(data), sep,last.astype(int), sep, | |
377 last / len(data), sep, len(data))) | |
378 | |
379 ## information for FS >= 1 | |
380 output_file.write( | |
381 "The unique frequencies were calculated from the dataset where the tags occured only once (=ab without DCS, ba without DCS)\n" \ | |
382 "Whereas the total frequencies were calculated from the whole dataset (=including the DCS).\n\n") | |
383 output_file.write("FS >= 1{}{}unique:{}total:\n".format(sep, sep, sep)) | |
384 output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB), sep, | |
385 float(len(dataAB)) / (len(dataAB) + len(dataBA) + len( duplTags)), sep, | |
386 float(len(dataAB)) / (len(ab) + len(ba)))) | |
387 output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA), sep, | |
388 float(len(dataBA)) / (len(dataBA) + len(dataBA) + len(duplTags)), sep, | |
389 float(len(dataBA)) / (len(ba) + len(ba)))) | |
390 output_file.write( | |
391 "nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags), len(duplTags_double), sep, | |
392 float(len(duplTags)) / ( len(dataAB) + len( dataBA) + len(duplTags)), | |
393 sep, float(len(duplTags)) / ( len(ab) + len(ba)), | |
394 float( len(duplTags_double)) / (len(ab) + len(ba)))) | |
395 output_file.write( | |
396 "length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, | |
397 (len(dataAB) + len(dataBA) + len(duplTags)), sep,(len(ab) + len(ba)))) | |
398 ## information for FS >= 3 | |
399 output_file.write("FS >= 3{}{}unique:{}total:\n".format(sep, sep, sep)) | |
400 output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB_FS3), sep, | |
401 float(len(dataAB_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), | |
402 sep, float(len(dataAB_FS3)) / ( len(ab_FS3) + len(ba_FS3)))) | |
403 output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA_FS3), sep, | |
404 float(len(dataBA_FS3)) / ( len(dataBA_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), | |
405 sep,float(len(dataBA_FS3)) / (len(ba_FS3) + len(ba_FS3)))) | |
406 output_file.write( | |
407 "nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags_FS3),duplTags_double_FS3, | |
408 sep, float(len( duplTags_FS3)) / (len(dataBA_FS3) + len(duplTags_FS3)), | |
409 sep, float(len(duplTags_FS3)) / (len(ab_FS3) + len(ba_FS3)), | |
410 float(duplTags_double_FS3) / (len(ab_FS3) + len(ba_FS3)))) | |
411 output_file.write( | |
412 "length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, | |
413 (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, | |
414 (len(ab_FS3) + len(ba_FS3)))) | |
415 | |
416 output_file.write("\nValues from family size distribution\n") | |
417 output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) | |
418 for dx, ab, ba, fs in zip(counts[0][0], counts[0][1], counts[0][2], counts[1]): | |
419 if fs == 21: | |
420 fs = ">20" | |
421 else: | |
422 fs = "={}".format(fs) | |
423 ab1 = ab - dx | |
424 ba1 = ba - ab | |
425 output_file.write( | |
426 "FS{}{}{}{}{}{}{}{}{}\n".format(fs, sep, int(dx), sep, int(ab1), sep, int(ba1), sep, int(ba))) | |
427 | |
428 print("Files successfully created!") | |
429 | |
430 if __name__ == '__main__': | |
431 sys.exit(compare_read_families(sys.argv)) |