Mercurial > repos > miller-lab > genome_diversity
comparison modify_snp_table.xml @ 12:4b6590dd7250
Uploaded
author | miller-lab |
---|---|
date | Wed, 12 Sep 2012 17:10:26 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
11:d4ec09e8079f | 12:4b6590dd7250 |
---|---|
1 <tool id="gd_modify_gd_snp" name="Modify gd_snp" version="1.0.0"> | |
2 <description>modify a gd_snp dataset</description> | |
3 | |
4 <command interpreter="python"> | |
5 modify_snp_table.py "$input" "$p1_input" "$output" | |
6 #if $limit_coverage.choice == "0" | |
7 "-1" "-1" "-1" "-1" | |
8 #else | |
9 "${limit_coverage.lo_coverage}" "${limit_coverage.hi_coverage}" "${limit_coverage.low_ind_cov}" "${limit_coverage.lo_quality}" | |
10 #end if | |
11 #for $individual, $individual_col in zip($input.dataset.metadata.individual_names, $input.dataset.metadata.individual_columns) | |
12 #set $arg = '%s:%s' % ($individual_col, $individual) | |
13 "$arg" | |
14 #end for | |
15 </command> | |
16 | |
17 <inputs> | |
18 <param name="input" type="data" format="gd_snp" label="gd_snp dataset" /> | |
19 <param name="p1_input" type="data" format="gd_indivs" label="Population individuals" /> | |
20 <conditional name="limit_coverage"> | |
21 <param name="choice" type="select" format="integer" label="Option"> | |
22 <option value="0" selected="true">add columns to the gd_snp table</option> | |
23 <option value="1">discard some SNPs</option> | |
24 </param> | |
25 <when value="0" /> | |
26 <when value="1"> | |
27 <param name="lo_coverage" type="integer" min="0" value="0" label="Lower bound on total coverage" /> | |
28 <param name="hi_coverage" type="integer" min="0" value="1000" label="Upper bound on total coverage" /> | |
29 <param name="low_ind_cov" type="integer" min="0" value="0" label="Lower bound on individual coverage" /> | |
30 <param name="lo_quality" type="integer" min="0" value="0" label="Lower bound on individual quality values" /> | |
31 </when> | |
32 </conditional> | |
33 </inputs> | |
34 | |
35 <outputs> | |
36 <data name="output" format="gd_snp" metadata_source="input" /> | |
37 </outputs> | |
38 | |
39 <tests> | |
40 <test> | |
41 <param name="input" value="test_in/sample.gd_snp" ftype="gd_snp" /> | |
42 <param name="p1_input" value="test_in/a.gd_indivs" ftype="gd_indivs" /> | |
43 <param name="choice" value="1" /> | |
44 <param name="lo_coverage" value="0" /> | |
45 <param name="hi_coverage" value="1000" /> | |
46 <param name="low_ind_cov" value="3" /> | |
47 <param name="lo_quality" value="30" /> | |
48 <output name="output" file="test_out/modify_snp_table/modify.gd_snp" /> | |
49 </test> | |
50 </tests> | |
51 | |
52 <help> | |
53 **Dataset formats** | |
54 | |
55 The input datasets are gd_snp_ and gd_indivs_ formats. | |
56 The output dataset is in gd_snp_ format. (`Dataset missing?`_) | |
57 | |
58 .. _Dataset missing?: ./static/formatHelp.html | |
59 .. _gd_snp: ./static/formatHelp.html#gd_snp | |
60 .. _gd_indivs: ./static/formatHelp.html#gd_indivs | |
61 | |
62 **What it does** | |
63 | |
64 The user specifies that some of the individuals in the selected gd_snp_ table are | |
65 form a "population" that has been previously defined using the Galaxy tool to | |
66 select individuals from a gd_snp dataset. One option is for the program to append | |
67 four columns to the table, giving the total counts for the two alleles, the | |
68 "genotype" for the population and the maximum quality value, taken over all | |
69 individuals in the population. If all defined genotypes in the population | |
70 are 2 (agree with the reference), the population's genotype is 2; similarly | |
71 for 0; otherwise the genotype is 1 (unless all individuals have undefined | |
72 genotype, in which case it is -1. The other option is to remove rows from | |
73 the table for which the total coverage for the population is either too low | |
74 or too high, and/or if the individual coverage or quality value is too low. | |
75 | |
76 .. _gd_snp: ./static/formatHelp.html#gd_snp | |
77 | |
78 **Examples** | |
79 | |
80 - input gd_snp:: | |
81 | |
82 Contig161_chr1_4641264_4641879 115 C T 73.5 chr1 4641382 C 6 0 2 45 8 0 2 51 15 0 2 72 5 0 2 42 6 0 2 45 10 0 2 57 Y 54 0.323 0 | |
83 Contig48_chr1_10150253_10151311 11 A G 94.3 chr1 10150264 A 1 0 2 30 1 0 2 30 1 0 2 30 3 0 2 36 1 0 2 30 1 0 2 30 Y 22 +99. 0 | |
84 Contig20_chr1_21313469_21313570 66 C T 54.0 chr1 21313534 C 4 0 2 39 4 0 2 39 5 0 2 42 4 0 2 39 4 0 2 39 5 0 2 42 N 1 +99. 0 | |
85 etc. | |
86 | |
87 - input individuals:: | |
88 | |
89 9 PB1 | |
90 13 PB2 | |
91 17 PB3 | |
92 | |
93 - output from appending columns:: | |
94 | |
95 Contig161_chr1_4641264_4641879 115 C T 73.5 chr1 4641382 C 6 0 2 45 8 0 2 51 15 0 2 72 5 0 2 42 6 0 2 45 10 0 2 57 Y 54 0.323 0 29 0 2 72 | |
96 Contig48_chr1_10150253_10151311 11 A G 94.3 chr1 10150264 A 1 0 2 30 1 0 2 30 1 0 2 30 3 0 2 36 1 0 2 30 1 0 2 30 Y 22 +99. 0 3 0 2 30 | |
97 Contig20_chr1_21313469_21313570 66 C T 54.0 chr1 21313534 C 4 0 2 39 4 0 2 39 5 0 2 42 4 0 2 39 4 0 2 39 5 0 2 42 N 1 +99. 0 13 0 2 42 | |
98 etc. | |
99 | |
100 - output from filter SNPs with minimum count of 3 for the individuals:: | |
101 | |
102 Contig161_chr1_4641264_4641879 115 C T 73.5 chr1 4641382 C 6 0 2 45 8 0 2 51 15 0 2 72 5 0 2 42 6 0 2 45 10 0 2 57 Y 54 0.323 0 | |
103 Contig20_chr1_21313469_21313570 66 C T 54.0 chr1 21313534 C 4 0 2 39 4 0 2 39 5 0 2 42 4 0 2 39 4 0 2 39 5 0 2 42 N 1 +99. 0 | |
104 etc. | |
105 | |
106 </help> | |
107 </tool> |