Mercurial > repos > mingchen0919 > aurora_deseq2_site
comparison DESeq_results.Rmd @ 0:6f94b4b9de44 draft
planemo upload
author | mingchen0919 |
---|---|
date | Tue, 27 Feb 2018 23:57:53 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:6f94b4b9de44 |
---|---|
1 --- | |
2 title: 'DESeq2: Results' | |
3 output: | |
4 html_document: | |
5 number_sections: true | |
6 toc: true | |
7 theme: cosmo | |
8 highlight: tango | |
9 --- | |
10 | |
11 ```{r setup, include=FALSE, warning=FALSE, message=FALSE} | |
12 knitr::opts_chunk$set( | |
13 echo = as.logical(opt$X_e), | |
14 error = TRUE | |
15 ) | |
16 ``` | |
17 | |
18 | |
19 ```{r eval=TRUE} | |
20 # Import workspace | |
21 # fcp = file.copy(opt$X_W, "deseq.RData") | |
22 load(opt$X_W) | |
23 ``` | |
24 | |
25 # Results {.tabset} | |
26 | |
27 ## Result table | |
28 | |
29 ```{r} | |
30 cat('--- View the top 100 rows of the result table ---') | |
31 res <- results(dds, contrast = c(opt$X_C, opt$X_T, opt$X_K)) | |
32 write.csv(as.data.frame(res), file = opt$X_R) | |
33 res_df = as.data.frame(res)[1:100, ] | |
34 datatable(res_df, style="bootstrap", filter = 'top', | |
35 class="table-condensed", options = list(dom = 'tp', scrollX = TRUE)) | |
36 ``` | |
37 | |
38 ## Result summary | |
39 | |
40 ```{r} | |
41 summary(res) | |
42 ``` | |
43 | |
44 | |
45 # MA-plot {.tabset} | |
46 | |
47 | |
48 | |
49 ```{r} | |
50 cat('--- Shrinked with Bayesian procedure ---') | |
51 plotMA(res) | |
52 ``` | |
53 | |
54 | |
55 # Histogram of p values | |
56 | |
57 ```{r} | |
58 hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20, | |
59 col = "grey50", border = "white", main = "", | |
60 xlab = "Mean normalized count larger than 1") | |
61 ``` | |
62 | |
63 | |
64 # Visualization {.tabset} | |
65 ## Gene clustering | |
66 | |
67 ```{r} | |
68 clustering_groups = strsplit(opt$X_M, ',')[[1]] | |
69 | |
70 topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 20) | |
71 mat <- assay(rld)[ topVarGenes, ] | |
72 mat <- mat - rowMeans(mat) | |
73 annotation_col <- as.data.frame(colData(rld)[, clustering_groups]) | |
74 colnames(annotation_col) = clustering_groups | |
75 rownames(annotation_col) = colnames(mat) | |
76 pheatmap(mat, annotation_col = annotation_col) | |
77 ``` | |
78 | |
79 ## Sample-to-sample distance | |
80 | |
81 ```{r} | |
82 sampleDistMatrix <- as.matrix( sampleDists ) | |
83 colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) | |
84 pheatmap(sampleDistMatrix, | |
85 clustering_distance_cols = sampleDists, | |
86 col = colors) | |
87 ``` | |
88 | |
89 ## PCA plot | |
90 | |
91 ```{r} | |
92 plotPCA(rld, intgroup = clustering_groups) | |
93 ``` | |
94 | |
95 ## MDS plot {.tabset} | |
96 | |
97 ### Data table | |
98 ```{r} | |
99 mds <- as.data.frame(colData(rld)) %>% | |
100 cbind(cmdscale(sampleDistMatrix)) | |
101 knitr::kable(mds) | |
102 ``` | |
103 | |
104 ### Plot | |
105 ```{r} | |
106 ggplot(mds, aes(x = `1`, y = `2`, col = time)) + | |
107 geom_point(size = 3) + coord_fixed() | |
108 ``` | |
109 |