Mercurial > repos > mingchen0919 > aurora_fastqc
view rmarkdown_report.Rmd @ 0:0aeed70b3bc5 draft default tip
planemo upload commit 841d8b22bf9f1aaed6bfe8344b60617f45b275b2-dirty
author | mingchen0919 |
---|---|
date | Fri, 14 Dec 2018 00:38:44 -0500 |
parents | |
children |
line wrap: on
line source
--- title: '[FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) report' output: html_document: highlight: pygments --- ```{r setup, include=FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set(error = TRUE, echo = FALSE) ``` ```{css, echo=FALSE} pre code, pre, code { white-space: pre !important; overflow-x: scroll !important; word-break: keep-all !important; word-wrap: initial !important; } ``` ```{r, echo=FALSE} # to make the css theme to work, <link></link> tags cannot be added directly # as <script></script> tags as below. # it has to be added using a code chunk with the htmltool functions!!! css_link = tags$link() css_link$attribs = list(rel="stylesheet", href="vakata-jstree-3.3.5/dist/themes/default/style.min.css") css_link ``` ```{r, eval=FALSE, echo=FALSE} # this code chunk is purely for adding comments # below is to add jQuery and jstree javascripts ``` <script src="vakata-jstree-3.3.5/dist/jstree.min.js"></script> ```{r, eval=FALSE, echo=FALSE} # this code chunk is purely for adding comments # javascript code below is to build the file tree interface # see this for how to implement opening hyperlink: https://stackoverflow.com/questions/18611317/how-to-get-i-get-leaf-nodes-in-jstree-to-open-their-hyperlink-when-clicked-when ``` <script> jQuery(function () { // create an instance when the DOM is ready jQuery('#jstree').jstree().bind("select_node.jstree", function (e, data) { window.open( data.node.a_attr.href, data.node.a_attr.target ) }); }); </script> ```{r, eval=FALSE, echo=FALSE} --- # ADD YOUR DATA ANALYSIS CODE AND MARKUP TEXT BELOW TO EXTEND THIS R MARKDOWN FILE --- ``` # Run FastQC ```{bash} sh ${TOOL_INSTALL_DIR}/build-and-run-job-scripts.sh ``` ```{r echo=FALSE,results='asis'} # display fastqc job script cat('```bash\n') cat(readLines(paste0(Sys.getenv('REPORT_FILES_PATH'), '/job-1-script.sh')), sep = '\n') cat('\n```') ``` # Fastqc Output Visualization ## Overview ```{r eval=TRUE} read_1_summary = read.csv(paste0(opt$X_d, '/read_1_fastqc/summary.txt'), stringsAsFactors = FALSE, header = FALSE, sep = '\t')[, 2:1] read_2_summary = read.csv(paste0(opt$X_d, '/read_2_fastqc/summary.txt'), stringsAsFactors = FALSE, header = FALSE, sep = '\t')[, 1] combined_summary = data.frame(read_1_summary, read_2_summary, stringsAsFactors = FALSE) names(combined_summary) = c('MODULE', 'Pre-trimming', 'Post-trimming') combined_summary[combined_summary == 'FAIL'] = 'FAIL (X)' combined_summary[combined_summary == 'WARN'] = 'WARN (!)' DT::datatable(combined_summary) ``` ```{r 'function definition', echo=FALSE} extract_data_module = function(fastqc_data, module_name, header = TRUE, comment.char = "") { f = readLines(fastqc_data) start_line = grep(module_name, f) end_module_lines = grep('END_MODULE', f) end_line = end_module_lines[which(end_module_lines > start_line)[1]] module_data = f[(start_line+1):(end_line-1)] writeLines(module_data, '/tmp/temp.txt') read.csv('/tmp/temp.txt', sep = '\t', header = header, comment.char = comment.char) } ``` ### Basic Statistics {.tabset} #### Before ```{r} fastqc_data_1 = paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt') module_name = 'Basic Statistics pass' basic_statistics = extract_data_module(fastqc_data_1, module_name) colnames(basic_statistics) = c('Measure', 'Value') DT::datatable(basic_statistics) ``` #### After ```{r} fastqc_data_2 = paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt') module_name = 'Basic Statistics pass' basic_statistics = extract_data_module(fastqc_data_2, module_name) colnames(basic_statistics) = c('Measure', 'Value') DT::datatable(basic_statistics) ``` ### Per base sequence quality ```{r 'per base sequence quality'} ## reads 1 pbsq_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Per base sequence quality') pbsq_1$id = 1:length(pbsq_1$X.Base) pbsq_1$trim = 'before' ## reads 2 pbsq_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Per base sequence quality') pbsq_2$id = 1:length(pbsq_2$X.Base) pbsq_2$trim = 'after' comb_pbsq = rbind(pbsq_1, pbsq_2) comb_pbsq$trim = factor(levels = c('before', 'after'), comb_pbsq$trim) p = ggplot(data = comb_pbsq) + geom_boxplot(mapping = aes(x = id, lower = Lower.Quartile, upper = Upper.Quartile, middle = Median, ymin = X10th.Percentile, ymax = X90th.Percentile, fill = "yellow"), stat = 'identity') + geom_line(mapping = aes(x = id, y = Mean, color = "red")) + scale_x_continuous(name = '\nPosition in read (bp)', breaks = pbsq_2$id, labels = pbsq_2$X.Base) + scale_y_continuous(limits = c(0, max(comb_pbsq$Upper.Quartile) + 5)) + scale_fill_identity() + scale_color_identity() + facet_grid(. ~ trim) + theme(axis.text.x = element_text(size = 5), panel.background = element_rect(fill = NA), panel.grid.major.y = element_line(color = 'blue', size = 0.1)) p ``` ### Per tile sequence quality ```{r 'per tile sequence quality'} ## check if 'per tile sequence quality' module exits or not check_ptsq = grep('Per tile sequence quality', readLines(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'))) if (length(check_ptsq) > 0) { ## reads 1 ptsq_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Per tile sequence quality') ptsq_1$trim = 'before' ## reads 2 ptsq_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Per tile sequence quality') ptsq_2$trim = 'after' comb_ptsq = rbind(ptsq_1, ptsq_2) comb_ptsq$trim = factor(levels = c('before', 'after'), comb_ptsq$trim) comb_ptsq$Base = factor(levels = unique(comb_ptsq$Base), comb_ptsq$Base) # convert integers to charaters # comb_ptsq$Tile = as.character(comb_ptsq$X.Tile) p = ggplot(data = comb_ptsq) + geom_raster(mapping = aes(x = Base, y = X.Tile, fill = Mean)) + facet_grid(. ~ trim) + scale_x_discrete(name = "\nPosition in read (bp)") + scale_y_continuous(name = "") + scale_fill_gradient(low = "blue", high = "red") + theme(axis.text.x = element_text(size = 5, angle = 90), axis.text.y = element_text(size = 5), panel.background = element_rect(fill = NA)) ggplotly(p) } else { print('No "per tile sequence quality" data') } ``` ### Per sequence quality score ```{r 'Per sequence quality score'} ## reads 1 psqs_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Per sequence quality scores') psqs_1$trim = 'before' ## reads 2 psqs_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Per sequence quality scores') psqs_2$trim = 'after' comb_psqs = rbind(psqs_1, psqs_2) comb_psqs$trim = factor(levels = c('before', 'after'), comb_psqs$trim) p = ggplot(data = comb_psqs) + geom_line(mapping = aes(x = X.Quality, y = Count), color = 'red') + facet_grid(. ~ trim) + scale_x_continuous(name = '\nMean Sequence Qaulity (Phred Score)', limits = c(min(comb_psqs$X.Quality), max(comb_psqs$X.Quality))) + scale_y_continuous(name = '') + theme(panel.background = element_rect(fill = NA), axis.line = element_line(), panel.grid.major.y = element_line(color = 'blue', size = 0.1)) p ``` ### Per base sequence content ```{r 'Per base sequence content'} ## reads 1 pbsc_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Per base sequence content') pbsc_1$id = 1:length(pbsc_1$X.Base) melt_pbsc_1 = melt(pbsc_1, id=c('X.Base', 'id')) melt_pbsc_1$trim = 'before' ## reads 2 pbsc_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Per base sequence content') pbsc_2$id = 1:length(pbsc_2$X.Base) melt_pbsc_2 = melt(pbsc_2, id=c('X.Base', 'id')) melt_pbsc_2$trim = 'after' comb_pbsc = rbind(melt_pbsc_1, melt_pbsc_2) comb_pbsc$trim = factor(levels = c('before', 'after'), comb_pbsc$trim) p = ggplot(data = comb_pbsc) + geom_line(mapping = aes(x = id, y = value, color = variable)) + facet_grid(. ~ trim) + xlim(min(comb_pbsc$id), max(comb_pbsc$id)) + ylim(0, 100) + xlab('\nPosition in read (bp)') + ylab('') + scale_color_discrete(name = '') + theme_classic() p ``` ### Per sequence GC content ```{r 'Per sequence GC content'} ## reads 1 psGCc_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Per sequence GC content') psGCc_1$trim = 'before' ## reads 2 psGCc_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Per sequence GC content') psGCc_2$trim = 'after' comb_psGCc = rbind(psGCc_1, psGCc_2) comb_psGCc$trim = factor(levels = c('before', 'after'), comb_psGCc$trim) p = ggplot(data = comb_psGCc, aes(x = X.GC.Content, y = Count)) + geom_line(color = 'red') + facet_grid(. ~ trim) + xlab('\nMean Sequence Qaulity (Phred Score)') + ylab('') + scale_color_discrete(name = '') + theme_classic() p ``` ### Per base N content ```{r 'Per base N content'} ## reads 1 pbNc_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Per base N content') pbNc_1$id = 1:length(pbNc_1$X.Base) pbNc_1$trim = 'before' ## reads 2 pbNc_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Per base N content') pbNc_2$id = 1:length(pbNc_2$X.Base) pbNc_2$trim = 'after' comb_pbNc = rbind(pbNc_1, pbNc_2) comb_pbNc$trim = factor(levels = c('before', 'after'), comb_pbNc$trim) p = ggplot(data = comb_pbNc, aes(x = id, y = N.Count)) + geom_line(color = 'red') + scale_x_continuous(breaks = pbNc_2$id, labels = pbNc_2$X.Base) + facet_grid(. ~ trim) + ylim(0, 1) + xlab('\nN-Count') + ylab('') + theme(axis.text.x = element_text(size = 5), axis.line = element_line(), panel.background = element_rect(fill = NA)) p ``` ### Sequence Length Distribution ```{r 'Sequence Length Distribution'} ## reads 1 sld_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Sequence Length Distribution') sld_1$id = 1:length(sld_1$X.Length) sld_1$trim = 'before' ## reads 2 sld_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Sequence Length Distribution') sld_2$id = 1:length(sld_2$X.Length) sld_2$trim = 'after' comb_sld = rbind(sld_1, sld_2) comb_sld$trim = factor(levels = c('before', 'after'), comb_sld$trim) p = ggplot(data = comb_sld, aes(x = id, y = Count)) + geom_line(color = 'red') + scale_x_continuous(breaks = sld_2$id, labels = sld_2$X.Length) + facet_grid(. ~ trim) + xlab('\nSequence Length (bp)') + ylab('') + theme(axis.text.x = element_text(size = 5), panel.background = element_rect(fill = NA), axis.line = element_line(), plot.margin = margin(2,2,2,10) ) p ``` ### Sequence Duplication Levels ```{r 'Sequence Duplication Levels'} ## reads 1 sdl_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Sequence Duplication Levels', header = FALSE, comment.char = '#') names(sdl_1) = c('Duplication_Level', 'Percentage_of_deduplicated', 'Percentage_of_total') sdl_1$id = 1:length(sdl_1$Duplication_Level) melt_sdl_1 = melt(sdl_1, id=c('Duplication_Level', 'id')) melt_sdl_1$trim = 'before' ## reads 2 sdl_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Sequence Duplication Levels', header = FALSE, comment.char = '#') names(sdl_2) = c('Duplication_Level', 'Percentage_of_deduplicated', 'Percentage_of_total') sdl_2$id = 1:length(sdl_2$Duplication_Level) melt_sdl_2 = melt(sdl_2, id=c('Duplication_Level', 'id')) melt_sdl_2$trim = 'after' comb_sdl = rbind(melt_sdl_1, melt_sdl_2) comb_sdl$trim = factor(levels = c('before', 'after'), comb_sdl$trim) p = ggplot(data = comb_sdl) + geom_line(mapping = aes(x = id, y = value, color = variable)) + scale_x_continuous(breaks = sdl_2$id, labels = sdl_2$Duplication_Level) + facet_grid(. ~ trim) + xlab('\nSequence Duplication Level') + ylab('') + scale_color_discrete(name = '') + theme(axis.text.x = element_text(size = 5), panel.background = element_rect(fill = NA), axis.line = element_line(), legend.position="top") p ``` ### Overrepresented sequences {.tabset} #### Before ```{r} fastqc_data_1 = paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt') module_name = 'Overrepresented sequences' overrepresented_seq = extract_data_module(fastqc_data_1, module_name) colnames(overrepresented_seq) = c('Sequence', 'Count', 'Percentage', 'Possible Source') DT::datatable(overrepresented_seq) ``` #### After ```{r} fastqc_data_2 = paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt') module_name = 'Overrepresented sequences' overrepresented_seq = extract_data_module(fastqc_data_2, module_name) colnames(overrepresented_seq) = c('Sequence', 'Count', 'Percentage', 'Possible Source') DT::datatable(overrepresented_seq) ``` ### Adapter Content ```{r 'Adapter Content'} ## reads 1 ac_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Adapter Content') ac_1$id = 1:length(ac_1$X.Position) melt_ac_1 = melt(ac_1, id=c('X.Position', 'id')) melt_ac_1$trim = 'before' ## reads 2 ac_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Adapter Content') ac_2$id = 1:length(ac_2$X.Position) melt_ac_2 = melt(ac_2, id=c('X.Position', 'id')) melt_ac_2$trim = 'after' comb_ac = rbind(melt_ac_1, melt_ac_2) comb_ac$trim = factor(levels = c('before', 'after'), comb_ac$trim) p = ggplot(data = comb_ac, aes(x = id, y = value, color = variable)) + geom_line() + facet_grid(. ~ trim) + xlim(min(comb_ac$id), max(comb_ac$id)) + ylim(0, 1) + xlab('\nPosition in read (bp)') + ylab('') + scale_color_discrete(name = '') + theme(axis.text.x = element_text(size = 5), panel.background = element_rect(fill = NA), axis.line = element_line()) ggplotly(p) ``` ### Kmer Content {.tabset} #### Before ```{r 'Kmer Content (before)'} kc_1 = extract_data_module(paste0(opt$X_d, '/read_1_fastqc/fastqc_data.txt'), 'Kmer Content') DT::datatable(kc_1) ``` #### After ```{r 'Kmer Content (after)'} kc_2 = extract_data_module(paste0(opt$X_d, '/read_2_fastqc/fastqc_data.txt'), 'Kmer Content') DT::datatable(kc_2) ```