2
|
1 ---
|
|
2 title: 'DESeq2: Results'
|
|
3 output:
|
|
4 html_document:
|
|
5 number_sections: true
|
|
6 toc: true
|
|
7 theme: cosmo
|
|
8 highlight: tango
|
|
9 ---
|
|
10
|
|
11 ```{r setup, include=FALSE, warning=FALSE, message=FALSE}
|
|
12 knitr::opts_chunk$set(
|
|
13 echo = ECHO
|
|
14 )
|
|
15
|
|
16 library(DESeq2)
|
|
17 library(pheatmap)
|
|
18 library(genefilter)
|
|
19 ```
|
|
20
|
|
21 # Import workspace
|
|
22
|
|
23 ```{r eval=TRUE}
|
|
24 fcp = file.copy("DESEQ_WORKSPACE", "deseq.RData")
|
|
25 load("deseq.RData")
|
|
26 ```
|
|
27
|
|
28 # Results {.tabset}
|
|
29
|
|
30 ## Result table
|
|
31
|
|
32 ```{r}
|
|
33 group = colnames(sample_table)[CONTRAST_GROUP]
|
|
34 res <- results(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL'))
|
|
35 datatable(as.data.frame(res), style="bootstrap", filter = 'top',
|
|
36 class="table-condensed", options = list(dom = 'tp', scrollX = TRUE))
|
|
37 ```
|
|
38
|
|
39 ## Result summary
|
|
40
|
|
41 ```{r}
|
|
42 summary(res)
|
|
43 ```
|
|
44
|
|
45
|
|
46 # MA-plot {.tabset}
|
|
47
|
|
48 ## Shrinked with `lfcShrink()` function
|
|
49
|
|
50 ```{r eval=FALSE}
|
|
51 shrink_res = DESeq2::lfcShrink(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL'), res=res)
|
|
52 plotMA(shrink_res)
|
|
53 ```
|
|
54
|
|
55 ## Shrinked with Bayesian procedure
|
|
56
|
|
57 ```{r}
|
|
58 plotMA(res)
|
|
59 ```
|
|
60
|
|
61
|
|
62 # Histogram of p values
|
|
63
|
|
64 ```{r}
|
|
65 hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20,
|
|
66 col = "grey50", border = "white", main = "",
|
|
67 xlab = "Mean normalized count larger than 1")
|
|
68 ```
|
|
69
|
|
70
|
|
71 # Gene clustering
|
|
72
|
|
73 ```{r}
|
|
74 group_index = as.numeric(strsplit("CLUSTERING_GROUPS", ',')[[1]])
|
|
75 clustering_groups = colnames(sample_table)[group_index]
|
|
76
|
|
77 topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 20)
|
|
78 mat <- assay(rld)[ topVarGenes, ]
|
|
79 mat <- mat - rowMeans(mat)
|
|
80 annotation_col <- as.data.frame(colData(rld)[, clustering_groups])
|
|
81 colnames(annotation_col) = clustering_groups
|
|
82 rownames(annotation_col) = colnames(mat)
|
|
83 pheatmap(mat, annotation_col = annotation_col)
|
|
84 ```
|
|
85
|