Mercurial > repos > mingchen0919 > deseq2_rmarkdown
comparison DESeq_results.Rmd @ 2:cf6012738737 draft
Uploaded
author | mingchen0919 |
---|---|
date | Mon, 07 Aug 2017 18:10:42 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:b1ad9a998573 | 2:cf6012738737 |
---|---|
1 --- | |
2 title: 'DESeq2: Results' | |
3 output: | |
4 html_document: | |
5 number_sections: true | |
6 toc: true | |
7 theme: cosmo | |
8 highlight: tango | |
9 --- | |
10 | |
11 ```{r setup, include=FALSE, warning=FALSE, message=FALSE} | |
12 knitr::opts_chunk$set( | |
13 echo = ECHO | |
14 ) | |
15 | |
16 library(DESeq2) | |
17 library(pheatmap) | |
18 library(genefilter) | |
19 ``` | |
20 | |
21 # Import workspace | |
22 | |
23 ```{r eval=TRUE} | |
24 fcp = file.copy("DESEQ_WORKSPACE", "deseq.RData") | |
25 load("deseq.RData") | |
26 ``` | |
27 | |
28 # Results {.tabset} | |
29 | |
30 ## Result table | |
31 | |
32 ```{r} | |
33 group = colnames(sample_table)[CONTRAST_GROUP] | |
34 res <- results(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL')) | |
35 datatable(as.data.frame(res), style="bootstrap", filter = 'top', | |
36 class="table-condensed", options = list(dom = 'tp', scrollX = TRUE)) | |
37 ``` | |
38 | |
39 ## Result summary | |
40 | |
41 ```{r} | |
42 summary(res) | |
43 ``` | |
44 | |
45 | |
46 # MA-plot {.tabset} | |
47 | |
48 ## Shrinked with `lfcShrink()` function | |
49 | |
50 ```{r eval=FALSE} | |
51 shrink_res = DESeq2::lfcShrink(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL'), res=res) | |
52 plotMA(shrink_res) | |
53 ``` | |
54 | |
55 ## Shrinked with Bayesian procedure | |
56 | |
57 ```{r} | |
58 plotMA(res) | |
59 ``` | |
60 | |
61 | |
62 # Histogram of p values | |
63 | |
64 ```{r} | |
65 hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20, | |
66 col = "grey50", border = "white", main = "", | |
67 xlab = "Mean normalized count larger than 1") | |
68 ``` | |
69 | |
70 | |
71 # Gene clustering | |
72 | |
73 ```{r} | |
74 group_index = as.numeric(strsplit("CLUSTERING_GROUPS", ',')[[1]]) | |
75 clustering_groups = colnames(sample_table)[group_index] | |
76 | |
77 topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 20) | |
78 mat <- assay(rld)[ topVarGenes, ] | |
79 mat <- mat - rowMeans(mat) | |
80 annotation_col <- as.data.frame(colData(rld)[, clustering_groups]) | |
81 colnames(annotation_col) = clustering_groups | |
82 rownames(annotation_col) = colnames(mat) | |
83 pheatmap(mat, annotation_col = annotation_col) | |
84 ``` | |
85 |